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Physics Motivation
LSND observed a positive signal, but not confirmed.

The MiniBooNE is designed to confirm or refute LSND 
oscillation result at Δm2 ~ 1.0 eV2 . 
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MiniBooNE Flux
8 GeV protons on Be target gives:

p + Be → π+ , K+ , K0

νμ from:

π+ → μ+ νμ K+ → μ+ νμ K0 → π- μ+ νμ

Intrinsic νe from:

μ+ → e+ νe νμ K+ → π0 e+ νe K0 → π- e+ νe

L

L

L

The intrinsic νe is ~0.5% of the 
neutrino Flux, it’s one of major 
backgrounds for νμ νe search.

L(m), E(MeV), Δm2(eV2)
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Event Topology
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Event Reconstruction
• To reconstruct event position, direction, time, energy 

and invariant mass etc.
• Cerenkov light – prompt, directional
• Scintillation light – delayed, isotropic
• Using time likelihood and charge likelihood method to 

determine the optimal event parameters.
• Two parallel reconstruction packages 

– S-Fitter is based on a simple, point-like light source model;
– P-Fitter differs from S-Fitter by using more 0th

approximation tries, adding e/μ tracks with longitudinally 
varying light source term, wavelength-dependent light 
propagation and detection, non-point-like PMTs and photon 
scattering, fluorescence and reflection.
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Reconstruction Performance

Michel Electron
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Particle Identification
Two complementary and parallel methods:
• Log-likelihood technique: 

– simple to understand, widely used in HEP data 
analysis but less sensitive

• Boosted Decision Trees: 
– Non-linear combination of input variables
– Great performance for large number of input 

variables (about two hundred variables)
– Powerful and stable by combining many 

decision trees to make a “majority vote”
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Boosted Decision Trees

How to build a decision tree ?
For each node, try to find the best variable and splitting 
point which gives the best separation based on Gini index.
Gini_node = Weight_total*P*(1-P), P is weighted purity
Criterion = Gini_father – Gini_left_son – Gini_right_son
Variable is selected as splitter by maximizing the criterion.

How to boost the decision trees?
Weights of misclassified events in current tree are increased, the
next tree is built using the same events but with new weights,
Typically, one may build few hundred to thousand trees.

How to calculate the event score ?
For a given event, if it lands on the signal leaf in one tree, it is 
given a score of 1, otherwise, -1. The sum (probably weighted)
of scores from all trees is the final score of the event.
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Performance vs Number of Trees

Boosted decision trees focus on the 
misclassified events which usually have high 
weights after hundreds of tree iterations. An 
individual tree has a very weak discriminating 
power; the weighted misclassified event rate 
errm is about 0.4-0.45.

The advantage of using boosted decision 
trees is that it combines many decision trees,  
“weak” classifiers, to make a powerful classifier. 
The performance of boosted decision trees is 
stable after a few hundred tree iterations.

Ref1: Ref1: H.J.YangH.J.Yang, B.P. Roe, J. Zhu, , B.P. Roe, J. Zhu, ““Studies of Boosted Decision Trees for Studies of Boosted Decision Trees for MiniBooNEMiniBooNE Particle IdentificationParticle Identification””, , 
Physics/0508045, Physics/0508045, NuclNucl. . InstumInstum. & . & MethMeth. A 555(2005) 370. A 555(2005) 370--385.385.

Ref2: B.P. Roe, H.J. Yang, J. Zhu, Y. Liu, I. Ref2: B.P. Roe, H.J. Yang, J. Zhu, Y. Liu, I. StancuStancu, G. McGregor, , G. McGregor, ””Boosted decision trees as an alternative to Boosted decision trees as an alternative to 
artificial neural networks for particle identificationartificial neural networks for particle identification””, physics/0408124, NIMA 543 (2005) 577, physics/0408124, NIMA 543 (2005) 577--584.584.
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Output of Boosted Decision Trees
Osc νe CCQE vs All Background MC vs νμ Data
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Summary
• MiniBooNE Event Reconstruction

– Position resolution ~ 23 cm
– Direction resolution ~ 6o

– Energy resolution ~ 15%
– Reconstructed π0 mass resolution ~ 20 MeV/c2

• MiniBooNE Particle Identification
– For 0.1% μ eff., ~ 90% electron eff.
– For 1% π0 eff., ~ 70% electron eff.
– For 0.5% all background eff., ~ 80% electron eff.

• MiniBooNE Results are coming soon …
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Light Model
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• Predicted charge

• Cerenkov light - directional

• Scintillation light - isotopic
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