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Abstract

Boosted decision trees are applied to particle identification in the MiniBooNE experiment operated at Fermi National Accelerator

Laboratory (Fermilab) for neutrino oscillations. Numerous attempts are made to tune the boosted decision trees, to compare

performance of various boosting algorithms, and to select input variables for optimal performance.
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1. Introduction

In High Energy Physics (HEP) experiments, people
usually need to select some events with specific interest, so
called signal events, out of numerous background events
for study. In order to increase the ratio of signal to
background, one needs to suppress background events
while keeping high signal efficiency. To this end, some
advanced techniques, such as AdaBoost [1], �-Boost [2], �-
LogitBoost [2], �-HingeBoost, Random Forests [3] etc.,
from Statistics and Computer Sciences were introduced for
signal and background event separation in the MiniBooNE
experiment [4] at Fermilab. The MiniBooNE experiment is
designed to confirm or refute the evidence for nm! ne

oscillations at Dm2 ’ 1 eV 2=c4 found by the LSND
experiment [5]. It is a crucial experiment which will imply
new physics beyond the standard model if the LSND signal
is confirmed. These techniques are tuned with one sample
of Monte Carlo (MC) events, the training sample, and then
tested with an independent MC sample, the testing sample.
Initial comparisons of these techniques with artificial
neural networks (ANN) using the MiniBooNE MC
e front matter r 2005 Elsevier B.V. All rights reserved.
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samples were described previously [6]. This work indicated
that the method of boosted decision trees is superior to the
ANNs for Particle Identification (PID) using the Mini-
BooNE MC samples. Further studies show that the
boosted decision tree method has not only better event
separation, but is also more stable and robust than ANNs
when using MC samples with varying input parameters.
It is important to verify that the resultant algorithm is

not sensitive to small biases in the inputs, i.e., that it is
robust. For MiniBooNE about two dozen MC data sets,
each having a geometrical or physical parameter changed
by about one standard deviation, are generated. It is then
checked that, if the algorithm is trained with a central value
MC data set, the results do not strongly differ when the
resulting algorithm is applied to these varied sets. These
tests are ongoing, but it appears that the boosting method
is quite robust, in part due to using many PID variables.
The boosting algorithm is one of the most powerful

learning techniques introduced in the past decade [7–10].
The motivation for the boosting algorithm is to design a
procedure that combines many ‘‘weak’’ classifiers to
achieve a final powerful classifier. In the present work
numerous trials are made to tune the boosted decision
trees, and comparisons are made for various algorithms.
For a large number of discriminant variables, several
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techniques are described to select a set of powerful input
variables in order to obtain optimal event separation using
boosted decision trees. Furthermore, post-fitting of weights
for the trained boosting trees is also investigated to attempt
further possible improvement.

This paper is focussed on the boosting tuning. All results
appearing in this paper are relative numbers. They do not
represent the MiniBooNE PID performance; that perfor-
mance is continually improving with further algorithm and
PID study. The description of the MiniBooNE reconstruc-
tion packages [11,12], the reconstructed variables, the
overall and absolute performance of the boosting PID
[13,14], the validation of the input variables and the
boosting PID variables by comparing various MC and real
data samples [15] will be described in future articles.

2. Decision trees

Boosting algorithms can be applied to any classifier.
Here they are applied to decision trees. A schematic of a
simple decision tree is shown in Fig. 1, S means signal, B
means background, terminal nodes called leaves are shown
in boxes. The key issue is to define a criterion that describes
the goodness of separation between signal and background
in the tree split. Assume the events are weighted with each
event having weight W i. Define the purity of the sample in
a node by

P ¼

P
sW sP

sW s þ
P

bWb
, (1)

where
P

s is the sum over signal events and
P

b is the
sum over background events. Note that Pð1� PÞ is 0
if the sample is pure signal or pure background. For a
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Fig. 1. Schematic of a decision tree.
given node let

Gini ¼
Xn

i¼1

W i

 !
Pð1� PÞ, (2)

where n is the number of events on that node. The criterion
chosen is to minimize

Gini ðleft childÞ þ Gini ðright childÞ. (3)

To determine the increase in quality when a node is split
into two nodes, one maximizes

Criterion ¼ Gini ðfatherÞ � Gini ðleft childÞ

� Gini ðright childÞ. ð4Þ

At the end, if a leaf has purity greater than 1
2
(or whatever is

set), then it is called a signal leaf, otherwise, a background
leaf. Events are classified signal (have score of 1) if they
land on a signal leaf and background (have score of �1) if
they land on a background leaf. The resulting tree is a
decision tree.
Decision trees have been available for some time [7].

They are known to be powerful but unstable, i.e., a small
change in the training sample can produce a large change in
the tree and the results. Combining many decision trees to
make a ‘‘majority vote’’, as in the random forests method,
can improve the stability somewhat. However, as will be
discussed in Section 6, the performance of the random
forests method is significantly worse than the performance
of the boosted decision tree method in which the weights of
misclassified events are boosted for succeeding trees.

3. Some boosting algorithms

If there are N total events in the sample, the weight of
each event is initially taken as 1=N. Suppose that there are
M trees and m is the index of an individual tree. Let
�
 xi ¼ the set of PID variables for the ith event.

�
 yi ¼ 1 if the ith event is a signal event and yi ¼ �1 if the
event is a background event.

�
 wi ¼ the weight of the ith event.

�
 TmðxiÞ ¼ 1 if the set of variables for the ith event lands
that event on a signal leaf and TmðxiÞ ¼ �1 if the set of
variables for that event lands it on a background leaf.

�
 IðyiaTmðxiÞÞ ¼ 1 if yiaTmðxiÞ and 0 if yi ¼ TmðxiÞ.

There are several commonly used algorithms for boosting
the weights of the misclassified events in the training
sample. The boosting performance is quite different using
various ways to update the event weights.

3.1. AdaBoost

The first boosting method is called ‘‘AdaBoost’’ [1] or
sometimes discrete AdaBoost. Define for the mth tree:

errm ¼

PN
i¼1wiIðyiaTmðxiÞÞPN

i¼1wi

. (5)
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Calculate:

am ¼ b� lnðð1� errmÞ=errmÞ. (6)

b ¼ 1 is the value used in the standard AdaBoost method.
Change the weight of each event i, i ¼ 1; . . . ;N.

wi ! wi � eamIðyiaTmðxiÞÞ. (7)

Renormalize the weights.

wi !
wiPN
i¼1wi

. (8)

The score for a given event is

TðxÞ ¼
XM
m¼1

amTmðxÞ (9)

which is just the weighted sum of the scores of the
individual trees.

3.2. �-Boost

A second boosting method is called ‘‘�-Boost’’ [2], or
sometimes ‘‘shrinkage’’. After the mth tree, change the
weight of each event i, i ¼ 1; . . . ;N.

wi ! wie
2�IðyiaTmðxiÞÞ (10)

where � is a constant of the order of 0.01. Renormalize the
weights.

wi !
wiPN
i¼1wi

(11)

The score for a given event is

TðxÞ ¼
XM
m¼1

�TmðxÞ (12)

which is the renormalized, but unweighted, sum of the
scores over individual trees.
3.3. �-LogitBoost

A third boosting method is called ‘‘�-LogitBoost’’. This
method is quite similar to �-Boost, but the weights are
updated according to

wi !
e�yiTðxiÞ

1þ e�yiTðxiÞ
, (13)

where TðxÞ ¼ TðxÞ þ �� TmðxÞ for the mth tree iteration.
3.4. �-HingeBoost

A fourth boosting method is called ‘‘�-HingeBoost’’.
Again this method is quite similar to �-Boost, but here the
weights are updated according to

wi ¼ 1 if yiTðxiÞo1; wi ¼ 0 if yiTðxiÞX1 (14)

where TðxÞ ¼ TðxÞ þ �� TmðxÞ for the mth tree iterations.
3.5. LogitBoost

A fifth boosting method is called ‘‘LogitBoost’’ [2]. Let
y�i ¼ 1 for signal events and y�i ¼ 0 for background events.
Initial probability estimates are set to pðxiÞ ¼ 0:5 for event
i, where x is the set of PID variables. Let

zi ¼
y�i � pðxiÞ

pðxiÞð1� pðxiÞÞ
(15)

wi ¼ pðxiÞð1� pðxiÞÞ (16)

where wi is the weight of event i. Let z be the weighted
average of z over some set of events. Instead of the Gini
criterion, the splitting variable and point to divide the
events at a node into two nodes L and R is determined to
minimizeX

L

wiðzi � zLÞ
2
þ
X

R

wiðzi � zRÞ
2. (17)

The output for tree m is T�mðxiÞ ¼ z for the node onto
which event i falls. The total output score is

TðxÞ ¼
XM
m¼1

1

2
T�mðxÞ. (18)

The probability is updated according to

pðxÞ ¼
eTðxÞ

eTðxÞ þ e�TðxÞ
. (19)
3.6. Gentle AdaBoost

A sixth boosting method is called ‘‘Gentle AdaBoost’’
[2]. It uses same criterion as described for the LogitBoost.
Here zi is same as yi. The weights are updated according to

wi ! wie
�ð2pmðxiÞ�1Þ (20)

for signal events and

wi ! wie
þð2pmðxiÞ�1Þ (21)

for background events, where pmðxiÞ is the weighted purity
of the leaf on which event i falls.

3.7. Real AdaBoost

A seventh boosting method is called ‘‘Real AdaBoost’’
[2]. It is similar to the discrete version of AdaBoost
described in Section 3.1, but the weights and event scores
are calculated in different ways. The event score for event i

in tree m is given by

TmðxiÞ ¼ 0:5� lnðpmðxiÞ=ð1:� pmðxiÞÞÞ (22)

where pmðxiÞ is the weighted purity of the leaf on
which event i falls. The event weights are updated
according to

wi ! wi � eð�yi�TmðxiÞÞ (23)
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and then renormalized so that the total weight is one. The
total output score including all of the trees is given by
TðxÞ ¼

PM
m¼1TmðxÞ.

4. Tuning parameters for the boosted decision trees

MiniBooNE MC samples from the February 2004
Baseline MC were used to tune some parameters of the
boosted decision trees. There are 88 233 intrinsic ne signal
events and 16 2657 nm background events. 20 000 signal
events and 30 000 background events were selected
randomly for the training sample and the rest of the events
were the test sample. The number of input variables for
boosting training is 52. The relative ratio is defined as the
background efficiency divided by the corresponding signal
efficiency and rescaled by a constant value.

The left plot of Fig. 2 shows the relative ratio versus the
signal efficiency for AdaBoost with 45 leaves per decision
tree and various b values for 1000 tree iterations. The
boosting performances slightly depend on the b values.
AdaBoost with b ¼ 1 works slightly better in the high
signal efficiency region ðEff465%Þ but worse in the low
signal efficiency region ðEffo60%Þ than AdaBoost with
smaller b values, 0.8, 0.5 or 0.3. To balance the overall
performance, b ¼ 0:5 is selected to replace the standard
value 1 for the AdaBoost training.

The right plot of Fig. 2 shows the relative ratio versus the
signal efficiency for AdaBoost with b ¼ 0:5 and 1000 tree
iterations for various decision tree sizes ranging from 8
leaves to 100 leaves. AdaBoost with a large tree size
worked significantly better than AdaBoost with a small tree
size, 8 leaves; the latter number has been recommended in
some statistics literature [16]. Typically, it takes more tree
iterations for the smaller tree size to reach optimal
performance. For this application, even with more tree
iterations (10 000 trees), results from boosting with small
tree size (8 leaves) are still significantly worse (�10–20%)
than results obtained with large tree size (45 leaves). Here,
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Fig. 2. Tuning b (left) and decision
45 leaves per decision tree is selected (this number is quite
close to the number of input variables, 52, for the boosting
training.)
How many decision trees are sufficient? It depends on

the MC samples for boosting training and testing. For the
given set of boosting parameters selected above, we ran
boosting with 1000 tree iterations. The left plot of Fig. 3
shows the relative ratio versus the signal efficiency for
AdaBoost with tree iterations of 100, 200, 500, 800 and
1000, respectively. The boosting performance becomes
better with more tree iterations. The right plot of Fig. 3
shows the relative ratio versus the number of decision trees
for signal efficiencies of 50%, 60% and 70% which cover
the regions of greatest interest for the MiniBooNE
experiment. Typically, the boosting performance for low
signal efficiencies converges after few hundred tree itera-
tions and is then stable. For high signal efficiency, boosting
performance continues to improve as the number of
decision trees is increased. For these particular MC
samples, the boosting performance is close to optimal after
1000 tree iterations. For the sake of comparison, the
AdaBoost performance of the boosting training MC
samples is also shown in the right plot of Fig. 3. The
relative ratios drop quickly down to zero (zero means
no background events left after selection for a given
signal efficiency) within 100 tree iterations for 50–70%
signal efficiencies. The AdaBoost outputs for the
training MC sample and for the testing MC sample for
N tree ¼ 1, 100, 500 and 1000 are shown in Fig. 4. The
signal and background separation for the training
sample becomes better as the number of tree iterations
increases. The signal and background events are complete-
ly distinguished after about 500 tree iterations. For the
testing samples, however, the signal and back-
ground separations are quite stable after a few hundred
tree iterations. The corresponding relative ratios are
stable for given signal efficiencies as shown in right plot
of Fig. 3.
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The tuning parameter for �-Boost is �. The left plot of
Fig. 5 shows the relative ratio versus the signal efficiency
for �-Boost with � values of 0.005, 0.01, 0.02, 0.04,
respectively. �-Boost with fairly large � values for 45 leaves
per decision tree and 1000 tree iterations has better
performance for the high signal efficiency region
ðEff450%Þ. The results from AdaBoost with b ¼ 0:5 are
comparable to those from �-Boost. �-Boost with �40:01
works slightly better because �-Boost converges more
quickly with larger � values. However, with more tree
iterations, the final performances for different � values are
very comparable. Here � ¼ 0:01 is chosen for further
comparisons.

The right plot of Fig. 5 shows the relative ratio versus the
signal efficiency for AdaBoost and �-Boost using two
different ways to split tree nodes. One way is to maximize
the criterion based on the Gini index to select the next tree
split, the other way is to split the left tree node first. For
AdaBoost, the performance for the ‘‘left node first’’
method gets worse for signal efficiency less than about
65%. At about the same signal efficiency, the performance
for the two �-Boosts are quite comparable and are
comparable with AdaBoost based on the Gini index.
However, the �-Boost method based on the Gini index
becomes worse than the others for high signal efficiency.

Larger � makes �-Boost converge more quickly, but
increasing the size of decision trees also makes �-Boost
converge more quickly. The performance comparison of
AdaBoost with different tree sizes shown in the right plot
of Fig. 2 is for the same number of tree iterations (1000).
To make a fair comparison for the boosting performance
with different tree sizes, it is better to let them have a
similar number of total tree leaves. The top left plot of the
Fig. 6 shows the relative ratio versus the signal efficiency
for AdaBoost and �-Boost with similar numbers of the
total tree leaves, 1800 tree iterations for 45 leaves per tree
and 10 000 tree iterations for 8 leaves per tree. For a small
decision tree size of 8 leaves, the performance of the �-
Boost is better than that of AdaBoost for 10 000 trees. For
a large decision tree size of 45 leaves, �-Boost has slightly
better performance than AdaBoost at low ne signal
efficiency ðo65%Þ, but worse at high ne signal efficiency
ð470%Þ. The comparison between small tree size (8 leaves)
and large tree size (45 leaves) with comparable overall
decision tree leaves indicates that large tree size with 45
leaves yields �10–20% better performance for the Mini-
BooNE Monte Carlo samples.
The other five plots in Fig. 6 show the relative ratio

versus the number of tree iterations for AdaBoost and �-
Boost with 45 leaves and 8 leaves assuming signal
efficiencies of 40%, 50%, 60%, 70%, 80%, respectively.
The maximum number of tree iterations is 5000 for the
large tree size of 45 leaves and 10 000 for the small tree size
of 8 leaves. Usually, the performance of the boosting
method becomes better with more tree iterations in the
beginning; then at some point, it may reach an optimal
value and gradually get worse with increasing number of
trees, especially in the low signal efficiency region. The
turning point of the boosting performance depends on the
signal efficiency and MC samples used for training and test.
Generally, if the number of weighted signal events is

larger than the number of weighted background events in a
given leaf, it is called a signal leaf, otherwise, a background
leaf. Here, the threshold value for signal purity is 50% for
the leaf to be called a signal leaf. This threshold value can
be modified, say, to 30%, 40%, 45%, 60% or 70%. It is
seen in Fig. 7 that the performance of boosted decision
trees with Adaboost degrades for threshold values away
from the central value of 50%. Especially for threshold
values away from 50%, the errm of mth tree often
converges to 0.5 within about 100 tree iterations; after
that the weights of the misclassified events do not
successfully update because am � b� lnðð1� errmÞ=errmÞ ¼

0 if errm ¼ 0:5. Then wi ¼ wi � eam�IðyiaTmðxiÞÞ remains the
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same as for the previous tree. Typically, the errm value
increases for the first 100–200 tree iterations and then
remains stable for further tree iterations, causing the
weight of mth tree, am, to decrease for the first 100–200
tree iterations and then remain stable. For practical use of
the AdaBoost algorithm, a lower limit, say, 0.01, on am will
avoid the impotence of the succeeding boosted decision
trees.

This problem is unlikely to happen for �-Boost because
the weights of misclassified events are always updated by
the same factor, e2��IðyiaTmðxiÞÞ. If differing purity threshold
values are applied to boosted decision trees with �-Boost,
the performance peaks around 50% and slightly worsens,
typically within 5%, for other values ranging from 30% to
70%.
The unweighted misclassified event rate, weighted
misclassified event rate errm and am for the boosted
decision trees with the AdaBoost algorithm versus
the number of tree iterations are shown in Fig. 8, for a
signal purity threshold value of 50%. From this plot,
it is clear that, after a few hundred tree iterations, an
individual boosted decision tree has a very weak discrimi-
nant power (i.e., is a ‘‘weak’’ classifier). The errm is
about 0.4–0.45, corresponding to am of around 0.2–0.1.
The unweighted event discrimination of an individual
tree is even worse, as is also seen in Fig. 8. Boosted deci-
sion trees focus on the misclassified events which usually
have high weights after hundreds of tree iterations.
The advantage of the boosted decision trees is that the
method combines all decision trees, ‘‘weak’’ classifiers, to
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make a powerful classifier as stated in the introduction
section.

When the weights of misclassified events are increased
(boosted), some events which are very difficult correctly
classify obtain large event weights. In principle, some
outliers which have large event weights may degrade the
boosting performance. To avoid this effect, it might be
useful to set an upper limit for the event weights to trim
some outliers. It is found that setting a weight limit doesn’t
improve the boosting performance, and, in fact, may
degrade the boosting performance slightly. However, the
effect was observed to be within one standard deviation for
the statistical error. One might also trim events with very
low weights which can be correctly classified easily to
provide a better chance for difficult events. No apparent
improvement or degradation was observed considering the
statistical error. These results may indicate that the boosted
decision trees have the ability to deal with outliers quite
well and to focus on the events located around the
boundary regions where it is difficult to correctly distin-
guish signal and background events.

5. Comparison among boosting algorithms

Besides AdaBoost and �-Boost, there are other algo-
rithms such as �-LogitBoost, and �-HingeBoost which use
different ways of updating the event weights for the
misclassified events. The four plots of Fig. 9 show the
relative ratio versus the signal efficiency for various
boostings with different tree sizes. The top left, top right,
bottom left, and bottom right plots are for 500, 1000, 2000,
and 3000 tree iterations, respectively. Boosting with a large
tree size of 45 leaves is seen to work better than boosting
with a small tree size of 8 leaves as noted above. AdaBoost
and �-Boost have comparable performance, slightly better
than that of �-LogitBoost. �-HingeBoost is the worst
among these four boosting algorithms, especially for the
low signal efficiency region.
The top left, top right, bottom left and bottom right

plots of Fig. 10 show the relative ratio versus the signal
efficiency with 45 leaves of �-Boost, AdaBoost, �-Logit-
Boost and �-HingeBoost for varying numbers of tree
iterations. Generally, boosting performance continuously
improves with an increase in the number of tree iterations
until an optimum point is reached. From the two top plots,
it is apparent that �-Boost converges more slowly than does
AdaBoost; however, with about 1000 tree iterations, their
performances are very comparable. There is only marginal
improvement beyond 1000 tree iterations for high signal
efficiency, and the performance may get worse for the low
signal efficiency region if the boosting is over-trained (goes
beyond the optimal performance range). Similar plots for
the four boosting algorithms with 8 leaves per decision tree
are shown in the Fig. 11. Results for �-HingeBoost with 30
and 8 tree leaves are shown in the bottom right plots of
Figs. 10 and 11. The performance for 200 tree iterations
seems worse than that for 100 tree iterations. This may
indicate that its performance is unstable in the first few
hundred tree iterations, but works well after about 500 tree
iterations. However, the overall performance of �-Hinge
boost is the worst among the four boosting algorithms
described above.
For some purposes, LogitBoost has been found to be

superior to other algorithms [17]. For the MiniBooNE
data, it was found to have about 10–20% worse back-
ground contamination for a fixed signal efficiency than the
regular AdaBoost. LogitBoost converged very rapidly after
less than 200 trees and the contamination ratio got worse
past that point. A modification of LogitBoost was tried in
which the convergence was slowed by taking
TðxÞ ¼

PM
m¼1��

1
2

TmðxÞ, the extra factor of � ¼ 0:1 slow-
ing the weighting update rate. This indeed improved the
performance considerably, but the results were still slightly
worse than obtained with AdaBoost or �-Boost for a tree
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Fig. 9. Performance comparison of various boostings.
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size of 45 leaves. The convergence to an optimum point still
took fewer than 300 trees, which was less than the number
needed with AdaBoost or �-Boost.

Gentle AdaBoost and Real AdaBoost were also tried;
both of them were found slightly worse than the discrete
AdaBoost. Relative error ratio versus signal efficiency for
various boosting algorithms are listed in Tables 1 and 2.

6. Comparison of AdaBoost and random forests

The random forests is another algorithm which uses a
‘‘majority vote’’ to improve the stability of the decision
trees. The training events are selected randomly with or
without replacement. Typically, one half or one third of the
training events are selected for each decision tree training.
The input variables can also be selected randomly for
determining the tree splitters. There is no event weight
update for the misclassified events. For the AdaBoost
algorithm, each tree is built using the results of the previous
tree; for the random forests algorithm, each tree is
independent of the other trees.
Fig. 12 shows a comparison between random forests of

different tree sizes and Adaboost, both with 1000 tree
iterations. Large tree size is preferred for the random
forests (The original random forests method lets each tree
develop fully until all tree leaves are pure signal or
background). In this study a fixed number of tree leaves
were used. The performance of the random forests
algorithm with 200 or 400 tree leaves is about equal.
Compared with AdaBoost, the performance of the random
forests method is significantly worse. The main reason for
the inefficiency is that there is no event weight update for
the misclassified events. One of main advantages for the
boosting algorithm is that the weights of misclassified
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Fig. 10. Performance comparison of various boostings with large tree size.
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events are boosted which makes it possible for them to be
correctly classified in succeeding tree iterations.

Considering this advantage, an event weight update
algorithm (AdaBoost) was used to boost the random
forests. The performances of the boosted random forests
algorithm are then significantly better than those of the
original random forests as can be seen in Fig. 12. The
performance of the AdaBoost with 100 leaves per decision
tree is slightly better than that of the boosted random
forests. Other tests were made using one half training
events selected randomly for each tree together with 30%,
50%, 80% or 100% of the input variables selected
randomly for each tree split. The performances of the
boosted random forests method using the AdaBoost
algorithm are very stable.

The boosted random forests only uses one half or one
third of the training events selected randomly for each tree
and also only a fraction of the input variables for each tree
split, selected randomly; This method has the advantage
that it can run faster than regular AdaBoost while
providing similar performance. In addition, it may also
help to avoid over-training since the training events are
selected partly and randomly for each decision tree.

7. Post-fitting of the boosted decision trees

Some recent papers [18–20] indicate that post-fitting of
the trained boosted decision trees may help to make further
improvement. One possibility is that a selected ensemble of
many decision trees could be better than the ensemble of all
trees. Here post-fitting of the weights of decision trees was
tried. The basic idea is to optimize the boosting perfor-
mance by retuning the weights of the decision trees or even
removing some of them by setting them to have 0 weight. A
genetic algorithm [21,22] is used to optimize the weights of
all trained decision trees.
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Fig. 11. Performance comparison of various boostings with small tree size of 8 leaves per tree.
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A new MC sample is used for this purpose. The MC
sample is split into three subsamples, mc1, mc2 and mc3,
each subsample having about 26 700 signal events and
21 000 background events. Mc1 is used to train AdaBoost
with 1000 decision trees. The background efficiency for
mc1, mc2 and mc3 for a signal efficiency of 60% are
0.12%, 5.15% and 4.94%, respectively. If mc1 is used for
post-fitting, then the corresponding background efficiency
can be driven down to 0.05%, but the background
efficiency for test sample mc3 is about 5.5%. It has become
worse after post-fitting. It seems that it is not good to use
same sample for the boosting training and post-fitting. If
mc2 is used for post-fitting, then the background efficiency
goes down to 4.21% for the mc2, and 4.76% for the testing
sample mc3. The relative improvement is about 3.6% and
the statistical error for the background events is about
3.2%. Suppose the MC samples for post-fitting and testing
are exchanged, mc3 is used for post-fitting while mc2 is
used for testing. The background efficiency is 4.38% for
training sample mc3 and 5.06% for the testing sample mc2.
The relative improvement is about 1.5%.
A second post-fitting program was tried, the Pathseeker

program of J.H. Friedman and B.E. Popescu [19,20], a
robust regularized linear regression and classification
method. This program produced no overall improvement,
with perhaps a marginal 4% improvement for 50% signal
efficiency. It seems that post-fitting makes only a marginal
improvement based on our studies.

8. How to select input variables

One of the major advantages of the boosted decision tree
algorithm is that it can handle large numbers of input
variables as was pointed out previously [6]. Generally
speaking, more input variables cover more information
which may help to improve signal and background event
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Table 1

Relative error ratio versus signal efficiency for various boosting algorithms for MiniBooNE data. Differences up to about 0.03 are largely statistical

Boosting Parameters Relative ratios for given signal efficiencies

Algorithms b; � ðN leaves;NtreesÞ 30% 40% 50% 60% 70% 80%

AdaBoost 0.3 (45,1000) 0.39 0.49 0.63 0.80 1.12 1.73

AdaBoost 0.5 (45,1000) 0.38 0.50 0.62 0.78 1.06 1.63

AdaBoost 0.8 (45,1000) 0.45 0.54 0.62 0.82 1.07 1.60

AdaBoost 1.0 (45,1000) 0.48 0.55 0.67 0.81 1.07 1.60

AdaBoost 0.5 (8,1000) 0.53 0.63 0.81 1.11 1.78 3.21

AdaBoost 0.5 (20,1000) 0.43 0.58 0.71 0.93 1.31 2.20

AdaBoost 0.5 (100,1000) 0.43 0.51 0.61 0.76 1.00 1.45

�-Boost 0.005 (45,1000) 0.38 0.47 0.62 0.84 1.26 2.23

�-Boost 0.01 (45,1000) 0.41 0.50 0.60 0.80 1.14 1.87

�-Boost 0.02 (45,1000) 0.40 0.48 0.62 0.77 1.08 1.71

�-Boost 0.03 (45,1000) 0.38 0.48 0.58 0.75 1.03 1.62

�-Boost 0.04 (45,1000) 0.40 0.50 0.60 0.75 1.02 1.57

AdaBoost ðb ¼ 0:5Þ 0.5 (45,1000) 0.39 0.47 0.60 0.76 1.06 1.58

�-Boost ðb ¼ 0:5Þ 0.01 (45,1000) 0.36 0.46 0.62 0.83 1.23 2.00

�-Boost ðb ¼ 0:5Þ 0.03 (45,1000) 0.38 0.45 0.58 0.76 1.06 1.65

�-Boost ðb ¼ 0:5Þ 0.05 (45,1000) 0.37 0.44 0.58 0.74 1.03 1.58

b ¼ 0:5 means smooth scoring function described in Section 9.

Table 2

Relative error ratio versus signal efficiency for various boosting algorithms for MiniBooNE data

Boosting Parameters Relative ratios for given signal efficiencies

Algorithms b; � ðN leaves;NtreesÞ 30% 40% 50% 60% 70% 80%

AdaBoost 0.5 (8,1000) 0.53 0.63 0.81 1.11 1.78 3.21

AdaBoost 0.5 (8,5000) 0.50 0.60 0.74 0.98 1.40 2.52

�-Boost 0.01 (8,1000) 0.49 0.55 0.71 0.93 1.40 2.44

�-Boost 0.01 (8,5000) 0.51 0.55 0.66 0.86 1.17 1.82

�-LogitBoost 0.01 (8,1000) 0.49 0.59 0.79 1.07 1.58 2.95

�-LogitBoost 0.01 (8,5000) 0.52 0.57 0.68 0.89 1.22 2.01

�-HingeBoost 0.01 (8,1000) 0.58 0.66 0.83 1.09 1.68 2.88

�-HingeBoost 0.01 (8,5000) 0.61 0.69 0.82 1.05 1.48 2.49

�-LogitBoost 0.01 (45,1000) 0.39 0.50 0.61 0.82 1.11 1.84

�-HingeBoost 0.01 (30,1000) 0.77 0.80 0.86 0.96 1.20 1.80

LogitBoost 1.0 (45,130) 0.41 0.55 0.73 0.98 1.43 2.40

LogitBoost 0.1 (45,150) 0.44 0.52 0.62 0.82 1.23 2.00

Real AdaBoost (45,1000) 0.47 0.57 0.69 0.82 1.10 1.60

Gentle AdaBoost (45,1000) 0.47 0.54 0.67 0.83 1.05 1.56

Random forests(RF) (400,1000) 0.49 0.63 0.85 1.29 1.92 3.50

AdaBoosted RF 0.5 (100,1000) 0.48 0.56 0.66 0.81 1.04 1.58

Differences up to about 0.03 are largely statistical.
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separation. Often one can reconstruct several hundreds or
even thousands of variables which have some discriminant
power to separate signal and background events. Some of
them are superior to others, and some variables may have
correlations with others. Too many variables, some of
which are ‘‘noise’’ variables, would not improve but may
degrade the boosting performance. It is useful to select the
most useful variables for boosting training to maximize the
performance. New MC samples were generated with 182
reconstructed variables. In order to select the most
powerful variables, all 182 variables were used as input to
boosted decision trees running 150 tree iterations. Then the
effectiveness of the input variables was rated based on how
many times each variable was used as a tree splitter. The
first variable in the sorted list was regarded as the most
useful variable for boosting training. The first 100 sorted
input variables were selected to train AdaBoost with
b ¼ 0:5, 45 leaves per decision tree and 1000 tree iterations.
The dependence of the number of times a variable is used
as a tree splitter versus the number of tree iterations is
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shown for some selected input variables (variables number
1, 5, 10, 20, 50, 80 and 100) in the top left plot with linear
scale and in the top right plot with log scale (Fig. 13).

In this way, the first 30, 40, 60, 80, 100, 120 and 140
input variables were selected from the sorted list to train
boosted decision trees with 1000 tree iterations. A
comparison of their performance is shown in the left plot
of Fig. 14. The boosting performance steadily improves
with more input variables until about 100–120. Adding
further input variables does not improve and may degrade
the boosting performance. The main reason for the
degradation is that there is no further useful information
in the additional input variables and these variables can be
treated as ‘‘noise’’ variables for the boosting training.
However, if the additional variables include some new
information which is not included in the other variables,
they should help to improve the boosting performance.

So far only one way to sort the input variables has been
described. Some other ways can also be used and work
reasonably well as shown in the right plot of Fig. 14. List1
means the input variables are sorted based on the how
many times they were used as tree splitters for 150 tree
iterations, list2 means the input variables are sorted based
on their Gini index contributions for 150 tree iterations,
and list3 means the variables are sorted according to which
variables are used earlier than others as tree splitters for
150 tree iterations. List1001, list1002 and list1003 are
similar to list1, list2 and list3, but use 1000 tree iterations.
The first 100 input variables from the sorted lists are used
for boosting training with 1000 tree iterations. The
performances are comparable for 100 input variables
sorted in different ways. However, the boosting perfor-
mances for list1 and list3 are slightly better than the others.
If an equal number of input variables of 100 are selected
from each list, the number of variables which overlap
typically varies from about 70 to 90 for the different lists.
In other words, about 10 to 30 input variables are different
among the various lists. In spite of these differences, the
boosting performances are still comparable and stable.
Further studies with MC samples generated using varied
MC input parameters corresponding to systematic errors
show that the boosting outputs are very stable even though
some input variables vary quite a lot. If these same varied
MC samples are applied to the ANNs, it turns out that
boosted decision trees work significantly better than the
ANNs for both event separation performance and for
stability.

9. Tests of the scoring function

In the standard boost, the score for an event from an
individual tree is a simple square wave depending on the
purity of the leaf on which the event lands. If the purity is
greater than 0.5, the score is 1 and otherwise it is �1.
One can ask whether a smoother function of the

purity might be more appropriate. If the purity of a
leaf is 0.51, should the score be the same as if the purity
were 0.99? Two possible alternative scores were tested. Let
z ¼ 2� purity� 1.

A: score ¼ �1þ
2

e�az þ 1
(24)

B: score ¼ signðzÞ � jzjb (25)

where a and b are parameters.
Tests were run for various parameter values for scores A

and B and compared with the standard step function.
Performance comparisons of AdaBoost for various para-
meters a (left) and b (right) values are shown in Fig. 15.
For a smooth function with b ¼ 0:5, boosting perfor-

mance converges faster than the original AdaBoost
algorithm for the first few hundred decision trees, as
shown in Fig. 16. However, no evidence was found that the
optimum was reached any sooner by the smooth function.
The reason is that the smooth function of the purity
describes the probability of a given event to be signal or
background in more detail than the step function used in
the original AdaBoost algorithm. With an increase in the
number of tree iterations, however, the ‘‘majority vote’’
plays the most important role for the event separation. The
ultimate performance of the smooth function with b ¼ 0:5
is comparable to the performance of the standard
AdaBoost.

10. Some miscellaneous tests

In MiniBooNE, one is trying to improve the signal to
background ratio by more than a factor of 100. One might
expect that one should start by giving the background a
greater total weight than the signal. In fact, giving the
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Fig. 17. Performance of AdaBoost with b ¼ 0:5, 45 leaves per tree and

1000 tree iterations, using various number of background events for

training. 20,000 signal events were used for the training.
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background two to five times the weight of the signal
slightly degraded the performance. Giving the background
0.5–0.2 of the weight of the signal gave the same
performance as equal initial weights.

For one set of Monte Carlo runs the PID variables were
carefully modified to be flat as functions of the energy of
the event and the event location within the detector. This
decreased the correlations between the PID variables. The
performance of these corrected variables was compared
with the performance of the uncorrected variables. As
expected, the convergence was much faster at first for the
corrected variable boost. However, as the number of trees
increased, the performance of the uncorrected variable
boost caught up with the other. For 1000 trees, the
performance of the two boost tests was about the same.
Over the long run, boost is able to compensate for
correlations and dependencies, but the number of trees
for convergence can be considerably shortened by making
the PID variables independent.
The number of MC events used to train the boosting

effectively is also an important issue we have investigated.
Generally, more training events are preferred, but it is
impractical to generate unlimited MC events for training.
The performance of AdaBoost with 1000 tree iterations, 45
tree leaves per tree using various number of background
events ranging from 10 000 to 60 000 for training are shown
in Fig. 17, where the number of signal events is fixed
20 000. For the MiniBooNE data, the use of 30 000 or more
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background events works fairly well; fewer background
events for training degrades the performance.
11. Conclusions

PID input variables obtained using the event reconstruc-
tion programs for the MiniBooNE experiment were used to
train boosted decision trees for signal and background
event separation. Numerous trials were made to tune the
boosted decision trees. Based on the performance compar-
ison of various algorithms, decision trees with the
AdaBoost or the �-Boost algorithms are superior to the
others. The major advantages of boosted decision trees
include their stability, their ability to handle large number
of input variables, and their use of boosted weights for
misclassified events to give these events a better chance to
be correctly classified in succeeding trees.

Boosting is a rugged classification method. If one
provides sufficient training variables and sufficient leaves
for the tree, it appears that it will, eventually, converge to
close to an optimum value. This assumes that � for �-Boost
or b for Adaboost are not set too large. There are
modifications of the basic boosting procedure which can
speed up the convergence. Use of a smooth scoring
function improves initial convergence. In the last section,
it was seen that removing correlations of the input PID
variables improved convergence speed. For some applica-
tions, the use of a boosted natural forests technique may
also speed the convergence.

For a large set of discriminant variables, several
techniques can be used to select a set of powerful input
variables to use for training boosted decision trees. Post-
fitting of the boosted decision trees makes only a marginal
improvement in the tests presented here.
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