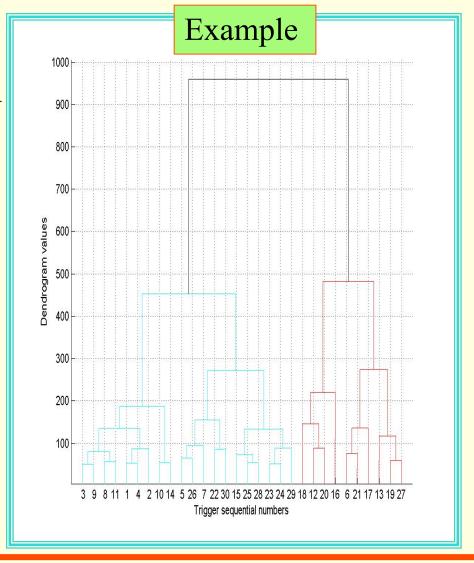
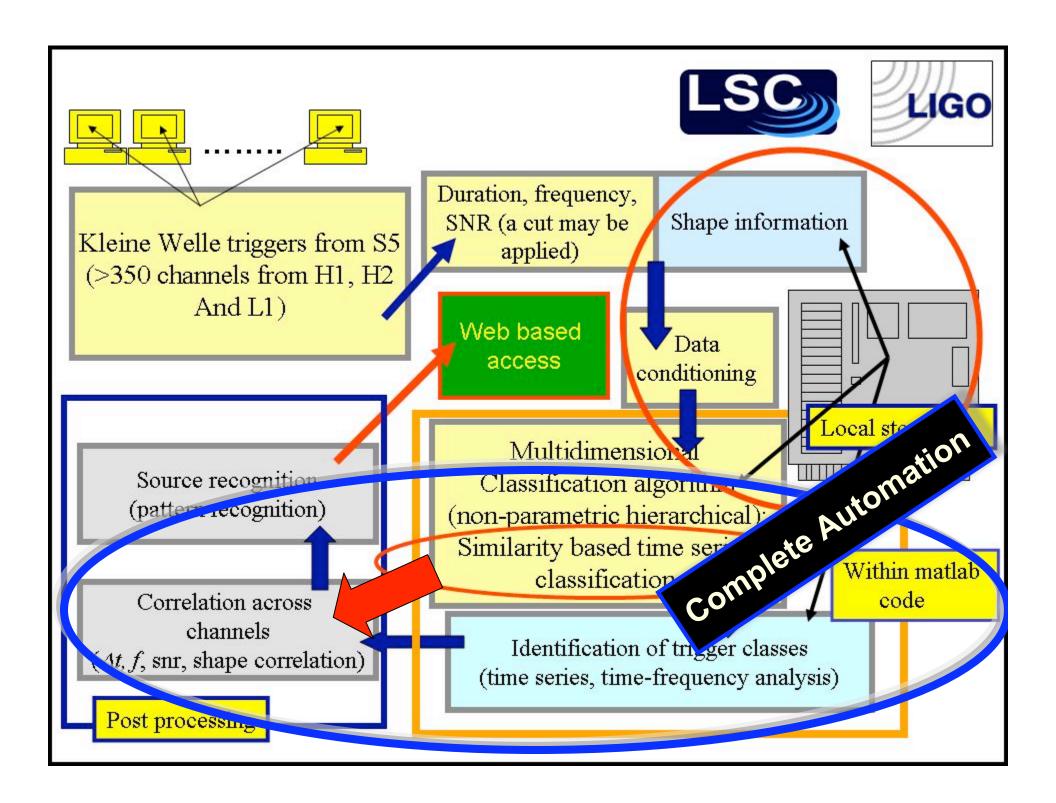
Multidimensional classification analysis of kleine Welle triggers in LIGO S5 run

An update

Soma Mukherjee, Robert Martin University of Texas at Brownsville Detector Characterization Telecon Jan 25 2008

LIGO DCC # G080018-00-Z

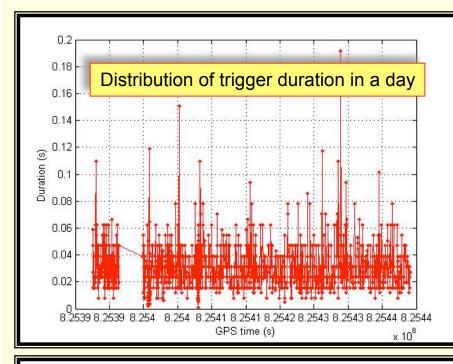


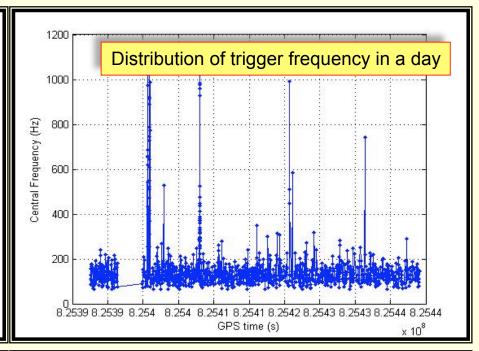

A quick walk through ...

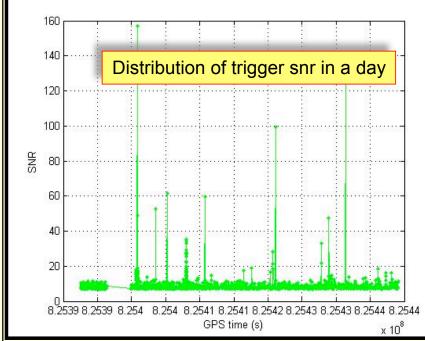
- •This study involves implementation of classification methods (non-parametric/hierarchical and parametric, s-means) to see presence of structures in higher dimensional parameter space. Often features embedded in higher dimensions are not elucidated in simple 1 or 2 dimensional study.
- •References for LIGO classification analysis: S. Mukherjee: Past LSC, F2F and GWDAW talks, Burst and Glitch group telecons, published paper in CQG).
- •kleine Welle (*Blackburn*, *L. et. al. 2005 LIGO-050158-00-Z*) is an algorithm that picks up burst triggers from the gravitational wave, auxiliary and environmental channels in LIGO. It generates several gigabytes of trigger database containing information about the physical properties of the burst triggers. The purpose of this analysis is to mine the trigger database to see if the triggers can be categorized in different groups that share common properties. This will lead to effective dimensionality reduction of the problem since the number expected groups will be a countable small number and each group, to some extent, uniform in character. The physical motivation here is that this could become a powerful veto mechanism.

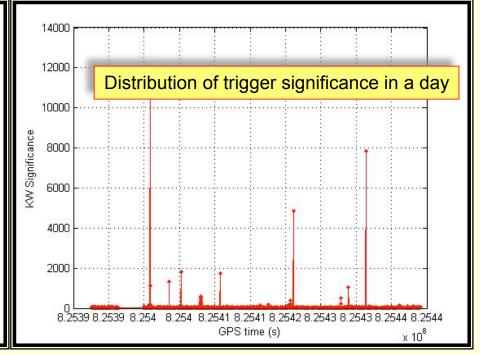
Algorithm: Hierarchical classification

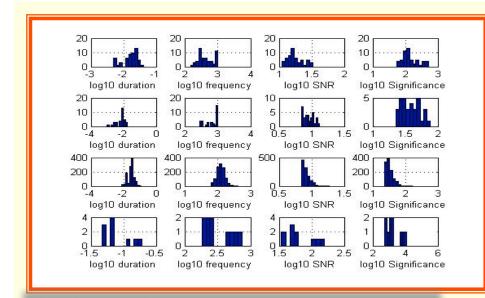
The algorithm is based on computation of distances between data points in the multidimensional space. A variance minimization criterion is used to group the objects into statistically distinct classes. The metric may be chosen in several different ways. The group formation stage is guided by complete-linkage criterion, i.e. largest distance between objects in two groups.

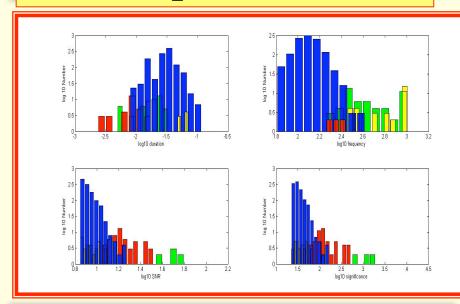

Post-analysis & Information Extraction

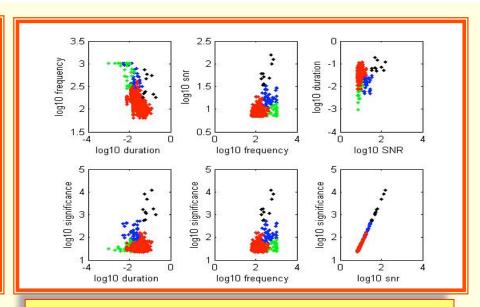

Trigger Visualization : Extended Analysis

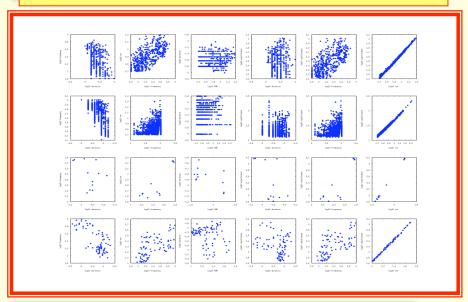

- A look at the time series and time-frequency plots for each trigger in the different classes found (snr = 6 and above at the moment).
 - · Data conditioning
 - Whitening and cleaning
 - Filtering over 256 Hz around central frequency
 - Decimation
 - Plots of conditioned time series and spectrograms


Across the channel correlation and correspondence : Targeted Analysis


- Select a window around the time of interest
- Construct a database of all channels in that window
- Look at classes across channels
- Run S-means* to see how the waveforms correspond
- Infer and catalog correlated channels.

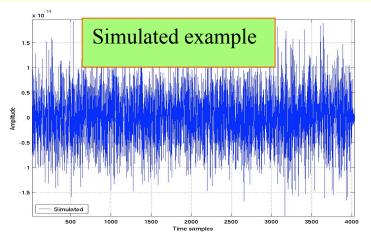


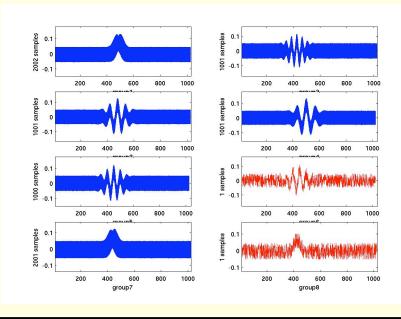


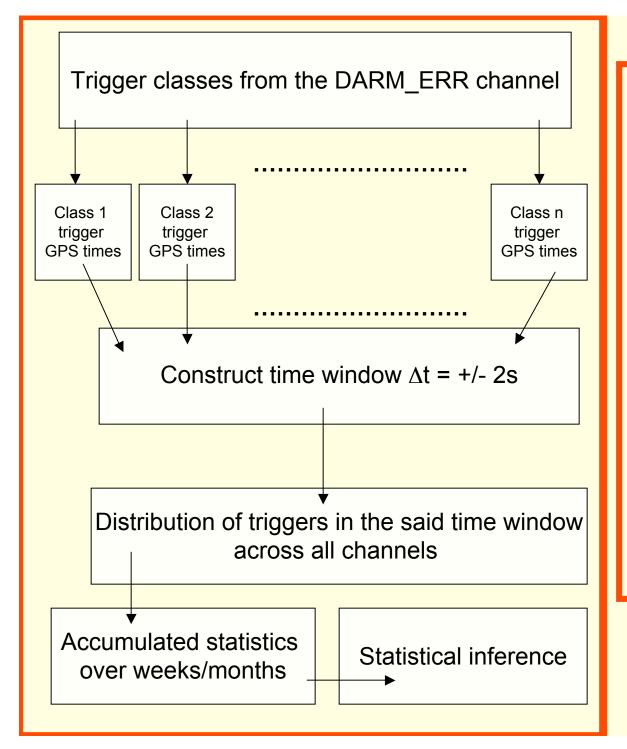

Distribution of individual class properties in a day in H1:LSC-DARM_ERR

Relative distribution of individual class members in a Day in H1:LSC-DARM_ERR

2D relative scatter of individual class members in a day in H1:LSC-DARM_ERR

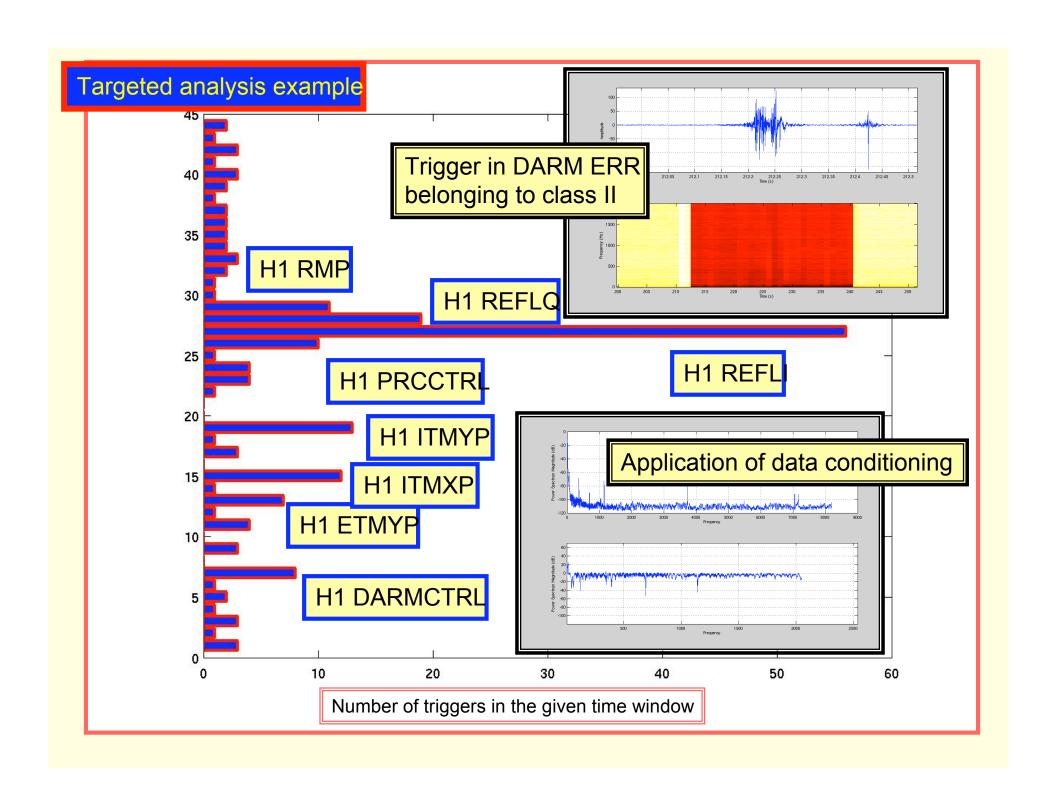

2D scatter of individual class properties in a day In H1:LSC-DARM_ERR

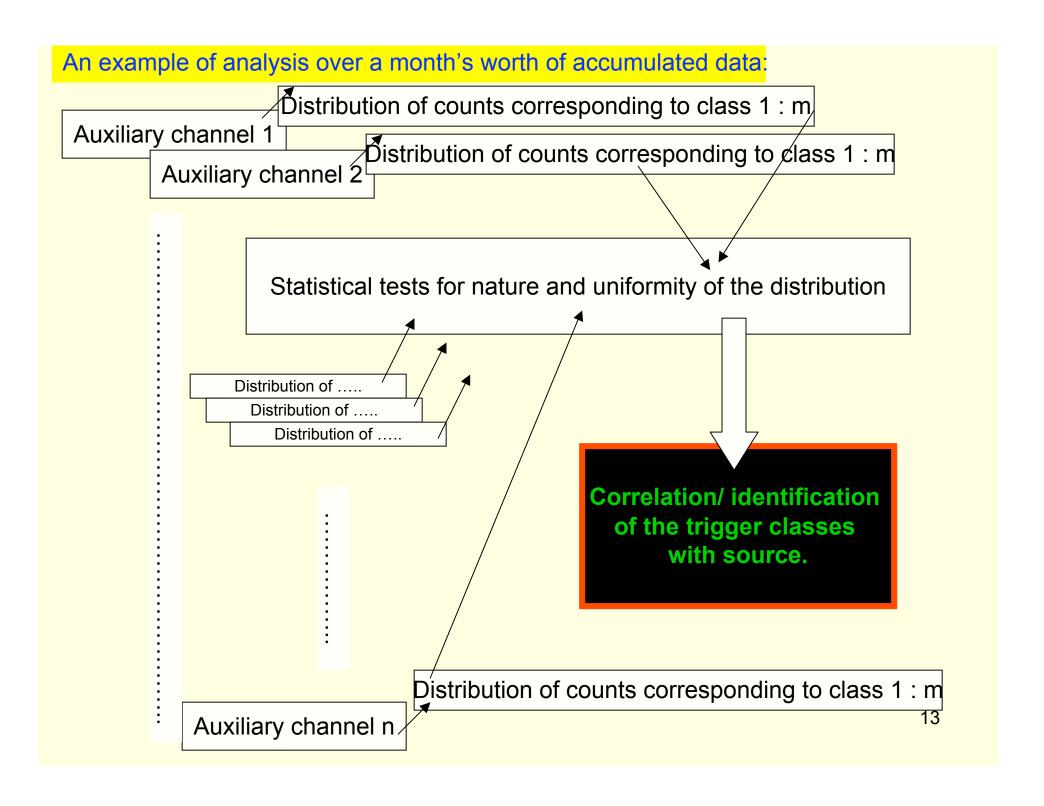

Post-analysis & Information Extraction II


- Across the channel correlation and correspondence : Targeted Analysis
 - Select a window around the time of interest
 - Construct a database of all channels in that window
 - Look at classes across channels
 - Run S-means* to see how the waveforms classify in the DARM_ERR
 - Infer and catalog correlated channels

Algorithm: Similarity driven time series classification

This algorithm is based on *s-means* which classifies data by assignment of k centroids chosen a priori and then partitioning data based on association of data points to the nearest centroid. In the final step, the algorithm minimizes an objective function, which in this case is a squared error function. The method is an iterative one where the centroids are re-calculated until stability is reached.




Conclusions:

Trigger A belonging to Class m in DARM_ERR channel in a certain interferometer shows statistically significant large values in the trigger distribution of the auxiliary channels in the said time window.

Accumulated results over the S5 run lead to identification of possible vetoes.

	A	В	С	D	Е	F	G
1	Channel Name	GPS Time Window = 20s; GPS Central = 830661844; GPS+/-10=830661834-830661854					
2	s5 h1 asac 830620800 830707200.trg (3)	830661844.31	830661844.44	830661844.37	577	1.68E+009	30314.7
3		830661844.45	830661844.52	830661844.46	392	3.60E+007	657.47
4	1	830661844.47	830661844.47	830661844.47	1024	1.53E+006	30.83
5	s5_h1_asdc_830620800_830707200.trg (1)	830661844.25	830661844.75	830661844.39	69	1.25E+008	3936.39
6	s5 h1 asi 830620800 830707200.trg (3)	830661844.33	830661844.46	830661844.36	574	5.88E+002	30657.43
7]	830661844.47	830661844.47	830661844.47	1024	5.11E-001	26.16
8	1	830661844.47	830661844.5	830661844.49	306	1.72E+000	128.55
9	s5_h1_asq_830620800_830707200.trg (1)	830661844.31	830661844.52	830661844.35	578	1.00E+003	30229.79
10	S5 h1 bsp 830620800 830707200.trg (2)	830661836.21	830661836.22	830661836.22	256	3.44E-013	17.62
11		830661844.25	830661844.5	830661844.4	15	5.85E-012	325.81
12	S5_h1_bsy_830620800_830707200.trg (1)	830661844.25	830661844.53	830661844.43	24	3.37E-012	811.73
13	s5 h1 darmetrl 830620800 830707200.trg (8)	830661844.31	830661844.48	830661844.35	555	5.91E+004	25024.88
		830661844.42	830661844.42	830661844.42	1024	4.18E+001	17.76
14 15		830661844.44	830661844.45	830661844.44	1024	6.99E+001	29.73
16		830661844.54	830661844.55	830661844.54	709	1.06E+004	4338.32
17		830661844.55	830661844.58	830661844.57	479	1.45E+003	638.73
18		830661844.59	830661844.59	830661844.59	1024	4.91E+001	20.9
19		830661844.59	830661844.6	830661844.59	512	6.36E+001	22.91
20		830661844.6	830661844.61	830661844.6	256	6.79E+001	37.15
21	s5_h1_darmctrlexcdag_830620800_830707200.trg (0)						
22	s5 h1 darmerrhifreg 830620800 830707200.trg (3)	830661844.32	830661844.35	830661844.33	5046	2.51E-005	144897.04
23		830661844.35	830661844.37	830661844.36	4950	1.59E-005	91974.64
24		830661844.53	830661844.54	830661844.53	2946	6.66E-007	3964.21
25	s5_h1_etmxexcdag_830620800_830707200.trg (0)						
26	s5_h1_etmxp_830620800_830707200.trg (4)	830661844.31	830661844.42	830661844.33	304	5.87E+002	13547.18
27		830661844.45	830661844.47	830661844.46	128	6.88E-001	21.53
28		830661844.47	830661844.59	830661844.53	32	7.82E-001	38.93
29		830661845.92	830661845.93	830661845.93	428	1.52E+000	35.34
30	s5_h1_etmxy_830620800_830707200.trg (1)	830661844.25	830661844.56	830661844.34	287	1.63E+003	14754.95
31	s5_h1_etmyp_830620800_830707200.trg (7)	830661844.31	830661844.5	830661844.34	303	1.68E+002	11571.78

Future, Timescales, Logistics

Specific Applications

- Combination of Hierarchical classification and S-means
 - Example of direct immediate application – Waveburst reconstructed waveforms.
- CVclust (in algorithm development stage)
- Other databases
 - Tracksearch
 - Others (GEO) ...

Estimated timelines

March F2F/LSC-Virgo –
 Estimated completion of the first two bulleted activities, continuation of more (e.g. other databases, other detectors) ...

Web site: http://bagroup.phys.utb.edu