
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LIGO-T990101-02Technical Note E- 11/30/99

Table Definitions for LDAS
Metadata / Event Database

P. Shawhan

Distribution of this draft:

LDAS Group; LIGO Scientific Collaboration

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working note
of the LIGO Project

Table of Contents

Index

File /home/pshawhan/metadb/doc/T990101_TableDef_v02.fm — printed November 30, 1999

LIGO-T990101-02

3

7
. 7
. 8

 . 9
0
1
2
3
14
4
5

6
7
8
9

1
1
2
23
3
24
4
6
7
8
0
0

32
33
34
4
7

7
8
9
0

Contents

1 INTRODUCTION .
2 SCOPE OF THE LDAS DATABASE . 3
3 OVERVIEW OF DATABASE DESIGN . 5
4 PROCESS INFORMATION. .

4.1 process Table Definition .
4.2 process_params Table Definition .

5 METADATA ABOUT RAW DATA . 9
5.1 Physical Data Units: Framesets .

5.1.1 frameset_chanlist Table Definition . 1
5.1.2 frameset_writer Table Definition . 1
5.1.3 frameset Table Definition . 1
5.1.4 frameset_loc Table Definition . 1

5.2 Logical Data Units: Segments .
5.2.1 segment_definer Table Definition . 1
5.2.2 segment Table Definition . 1

6 SUMMARY INFORMATION . 16
6.1 summ_value Table Definition . 1
6.2 summ_statistics Table Definition . 1
6.3 summ_spectrum Table Definition . 1
6.4 summ_comment Table Definition . 1

7 GDS TRIGGERS AND ASTROPHYSICS EVENT CANDIDATES 20
7.1 Filter Information. 2

7.1.1 filter Table Definition . 2
7.1.2 filter_params Table Definition . 2

7.2 GDS Triggers. .
7.2.1 gds_trigger Table Definition . 2

7.3 Single-Interferometer Astrophysics Event Candidates .
7.3.1 sngl_inspiral Table Definition . 2
7.3.2 sngl_burst Table Definition . 2
7.3.3 sngl_ringdown Table Definition . 2
7.3.4 sngl_unmodeled Table Definition . 2
7.3.5 sngl_unmodeled_v Table Definition . 3
7.3.6 sngl_dperiodic Table Definition . 3

7.4 Additional Information About Single-Interferometer Triggers/Events. 32
7.4.1 sngl_datasource Table Definition .
7.4.2 sngl_transdata Table Definition. .

7.5 Coincidences of Single-Interferometer Events .
7.5.1 coinc_sngl Table Definition . 3

7.6 Multi-Interferometer Astrophysics Event Searches. 3
7.6.1 multi_inspiral Table Definition . 3
7.6.2 multi_burst Table Definition . 3

8 SAMPLE QUERIES . 3
9 CONCLUSION . 4
page 2 of 41

LIGO-T990101-02

store
d as
mple,
as a
We
ome
ill be
han-
han-

uire-
r the
ements

are
, etc.
e, at
nguage
ber
QL
eness
n-
n
can

defini-
on by
s, in
e a

tions
 to be

ssed.

o be
1 INTRODUCTION
The LIGO Data Analysis System (LDAS) includes a database system which is intended to
information of various types, including metadata and event lists. “Metadata” may be define
information which facilitates access to, or interpretation of, the regular data stream. For exa
it includes a record of the configuration of the apparatus at any given point in time, as well
lookup table which indicates where the raw data from a given time interval may be found.
will also consider the term to include summary information derived from the data, although s
would argue that this should still be considered to be data, not metadata. LIGO “events” w
generated by various programs, both on-line and off-line, which examine the gravity-wave c
nel for signatures of astrophysical interest or which monitor instrumental or environmental c
nels for transients of terrestrial origin.

An earlier draft document, LIGO-T980070, “LIGO Metadata, Event and Reduced Data Req
ments—Preliminary”, laid out a conceptual data-usage model and a set of requirements fo
LDAS database. In the course of the full design process, some of these concepts and requir
have been modified, so this document should be considered to supersede the earlier one.

The LDAS database system has commercial database software at its core, with LIGO softw
layers on top to provide a more convenient and uniform user interface, do format translations
The IBM DB2 “Universal Database” has been selected for the underlying database softwar
least for the foreseeable future. This is a relational database which uses the SQL query la
to insert and retrieve information. All information is stored in “tables”, each with a fixed num
of pre-defined columns and a variable number of rows which represent database entries. S
provides ways to ensure the self-consistency of the database contents, in the form of uniqu
and “referential integrity” constraints; the latter may be thought of as defining certain relatio
ships between different tables. It also provides a flexible query syntax to retrieve informatio
from one or more tables; however, LDAS will provide a graphical user interface so that users
retrieve information in various ways without having to know SQL.

This document presents a specific design for the underlying database, in the form of table
tions expressed as SQL scripts, plus some discussion. It builds on an earlier implementati
Xiao Hu and others, correcting a number of shortcomings and providing additional capabilitie
consultation with members of the LDAS group and with John Zweizig. This is intended to b
stable, usable design; however, with DB2 it is possible to add tables or to modify table defini
and constraints (with some limitations) even after data has been inserted, should this prove
necessary or advantageous.

The conclusion of this documentation includes a list of open issues which need to be addre

2 SCOPE OF THE LDAS DATABASE
The design presented in this document covers the following database purposes:

• Metadata concerning raw frame data (including lists of “framesets” and “segments”, t
described in Section 5)

• Summary information (statistics, spectra, etc.) for time intervals of arbitrary length
page 3 of 41

LIGO-T990101-02

sients

y be
uld
 bursts,
t these
, in

e-off
l, mag-
erface
an be

tion
 into
e cor-
uld not
ment

d
 if

pace)

 if
rma-
e same
y mul-

ring
• List of events generated by the Global Diagnostics System (GDS) representing tran
detected in instrumental/environmental channels, etc.

• Lists of astrophysical event candidates

The database will likely be used for a variety of other purposes as well. For example, it ma
used to log information (statistics, etc.) from LDAS and/or data-acquisition processes. It co
also be used to record events from other sources, such as lists of earthquakes, gamma-ray
neutrinos observed in underground detectors, etc. On the other hand, it may be the case tha
things are adequately stored elsewhere, e.g. in searchable catalogs or parsable ASCII files
which case it may not be necessary to ingest them into the LDAS database; there is a trad
between the advantage of being able to use SQL queries to retrieve events (by time interva
nitude, etc.) vs. the disadvantage of having to set up DB2, the metadataAPI, and the user int
to handle these other event types. Decisions on these other possible database functions c
deferred, since they do not impact the design for the functions described in this document.

The exact scope of the LDAS database will be determined by the LIGO Scientific Collabora
(LSC) in consultation with LDAS personnel. Once the database design is finalized and put
use, a change to the design (for example, the addition of a new table) generally would requir
responding changes to the LIGO metadataAPI and user-interface software layers, and sho
be undertaken without good reason. Any proposed change should be presented in a docu
with the following information:

• Motivation for the proposed change

• Description of the proposed change

• Contact person(s)

• Name(s) of program(s) which will write to the database

• Description of output generated by the program(s) (event detection algorithm, metho
used to calculate each output variable, etc.), with references to other documentation
appropriate

• Description of new database table(s) needed (if any)

• Volume of data to be stored in the database (essential to ensure adequate storage s

• User-interface requirements (common queries, presentation of results, etc.)

• Requirements for replication to other database installations

Approved changes will be implemented by LDAS personnel, with help from the proposer(s)
needed. The proposal document will be made accessible from the LDAS web server for pe
nent reference. The tables in the current design, presented below, should be subjected to th
documentation requirement before they are put into active use. For tables which are used b
tiple programs (e.g. astrophysics event lists), each program should be documented.

General guidelines for including information in the database, and the procedure for conside
proposed changes, should be established by the LSC.
page 4 of 41

LIGO-T990101-02

 func-
 rela-
ppears

is
nition

 the
dex
ll be
mon

y used
g
rity of
que
rtain

timize
r
imes
with

h
ssem-
se.

t
d peri-

s
 moni-
ting
t;

bmit
us
h
 pro-

ial
e table,
3 OVERVIEW OF DATABASE DESIGN
The rest of this document presents table definitions to store appropriate information for the
tions listed at the beginning of Section 2. A graphical overview of the tables, indicating the
tionships between them, is shown in Figure 1. The SQL code to define these tables, as it a
in the later sections of this document, is currently located on the Caltech LIGO cluster in
/home/pshawhan/metadb/design_v02 . (Besides the individual files, there is a file
calledall_tables.sql which contains the code for all of the tables.) If you are viewing th
document as a pdf file, then clicking on a table name in Figure 1 should cause the table defi
to be displayed by your web browser.

Besides listing the columns contained within each table, one major design consideration is
choice of the “primary key”, which is required to be unique for each row. DB2 maintains an in
based on the primary key columns, so queries based on the columns in the primary key wi
performed more efficiently. In many cases, additional indexes are created to speed up com
queries which use columns other than those in the primary key. (These indexes are generall
to promote “clustering” of related rows in the same physical pages on disk, further improvin
access speed.) We also make extensive use of “foreign keys”, which help ensure the integ
the database by checking that the foreign key value(s) in one table match an entry in a uni
index (usually the primary key) of another table. All of these indexes and constraints add a ce
amount of overhead for inserting rows into the database, but our philosophy has been to op
more for retrieval than for insertion. (If necessary, indexes and constraints can be added o
deleted later on, even after data has been inserted.) Along the same lines, we have somet
made the database tables somewhat larger than strictly necessary (with extra columns, or
fixed-length rather than variable-length character strings) in the interest of faster querying.

Programs which write into the database must provide certain necessary information for eac
entry. LDAS will need to provide a software interface which makes it easy for the user to a
ble this information, format it appropriately (i.e. as an XML file) and transmit it to the databa
Currently it is thought that there will be two available methods for doing this:

• A program may submit multiple XML files while it is running. The first file, generated
during initialization, contains basic process information along with the values of inpu
parameters and descriptions of any filters used. Other files, generated and submitte
odically, contain blocks of events, summary information, or whatever. This method i
appropriate for programs which run continuously, such as on-line event searches or
toring programs. It requires the program to query the database once (before submit
the second XML file) in order to retrieve the unique ID which has been assigned to i
there are some timing issues here to be worked out.

• A program may assemble all generated database records in a single XML file, then su
it after the program finishes. This method does not have to carry out any synchrono
communication with the database. Thus, it is appropriate for off-line programs whic
operate on a fixed amount of data. It also allows the user to check the output of the
gram before submitting the XML file to the database.

One issue is the mechanism for generating unique values for certain entries; this is nontriv
because it is often the case that a given unique value must appear in more than one databas
page 5 of 41

LIG
O

-T
990101-02

page 6 of 41

filter

e sngl_transdata

coinc_sngl

sngl_unmodeled_v

multi_inspiral
multi_burst

1
N

1 1 1

0:1 0:1

NN

N

0:N

0:N

0:N

f the arrows (1, N, etc.) indicate the
(grouped by thick lines) have common
ht edge. Examples: 1) Each segment
any segments; 3) A frameset is related
_statistics, etc.) entry may or may not

ger, sngl_inspiral, etc.) entry may be

e TablesPSS 21 Nov 1999
F
igure 1: G

raphical overview
 of database tables defined in this docum

ent.

process_params process

filter_params

frameset_writer segment_definer

gds_trigger
sngl_inspiral
sngl_burst

sngl_ringdown
sngl_unmodeled
sngl_dperiodic

frameset_chanlist

frameset

frameset_loc

segment

summ_value
summ_statistics
summ_spectrum
summ_comment sngl_datasourc

N 1

N

1 1

N

1

N

1

N

1

N

0:1

0:N 0:N

0:1

N

1

N

1

N

1 1

N

N

1

1

0:1

1

N
0:1

Arrows indicate “foreign key” referential integrity constraints. Values near the ends o
possible multiplicities. Dashed lines indicate optional relationships. Stacked tables
relationships with other tables, except for relationship arrows connecting along the rig
is related to one segment_definer; 2) Each segment_definer is (generally) related to m
to one frameset_chanlist entry and to one frameset_writer; 3) A summ_value (or summ
be related to a segment and/or a frameset; 4)A single-interferometer event (gds_trig
related to up to one sngl_datasource and/or any number of sngl_transdata entries.

LDAS Metadata / Event Databas

• If viewing this as a pdf file, click
on a table to see its definition

http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/process_params.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/process.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/filter.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/filter_params.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/frameset_writer.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/segment_definer.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/gds_trigger.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/sngl_inspiral.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/sngl_burst.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/sngl_ringdown.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/sngl_unmodeled.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/sngl_dperiodic.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/frameset_chanlist.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/frameset.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/frameset_loc.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/segment.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/summ_value.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/summ_statistics.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/summ_spectrum.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/summ_comment.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/sngl_datasource.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/sngl_transdata.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/coinc_sngl.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/sngl_unmodeled_v.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/multi_inspiral.sql
http://www.ligo.caltech.edu/~pshawhan/metadb_design_v02/multi_burst.sql

LIGO-T990101-02

 the
unique
 A site-
ce it is
ly set

m

-

rom

aram-

d-
ustom-
but it is unreasonable to expect the user program to carry out two-way communication with
database for each event candidate, etc. Thus, the metadataAPI will include code to request
values from DB2 as necessary and insert them into each of the relevant database entries.
specific “creator database” tag (which is necessary to ensure uniqueness with certainty, sin
possible for different database servers to generate the same “unique value”) is automatical
by DB2. (We need to check whether this is propagated correctly when data is replicated.)

4 PROCESS INFORMATION
Theprocess table stores information about a specific invocation of a program. Any progra
which intends to insert information into the database must make an entry in theprocess table
during its initialization stage. A uniqueprocess_id will be assigned to the program; all data
base entries made by the program will then include thisprocess_id , to keep a “paper trail” of
who has modified the database. All other tables have a foreign-key relationship with the
process_id table, either directly or through another table. Programs which merely read f
the database do not have to add an entry to theprocess table.

Input parameters for a given process (e.g. from a configuration file) are stored in the
process_params table. Each row in this table stores the name, type, and value of one p
eter. Typically there are many parameters for a given process, leading to many rows in the
process_params table. For uniformity, we will always use this “generic” method of recor
ing process parameters, even though one could imagine more efficient storage schemes c
ized for individual processes.

When a process exits, it should modify its entry in theprocess table to record the end time.

4.1. process Table Definition
CREATE TABLE process
(
-- This table contains information about a specific invocation of a program.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- BASIC INFORMATION ABOUT THE PROGRAM
-- Program name
 program CHAR(16) NOT NULL,
-- Version of the program
 version CHAR(8) NOT NULL,
-- Where the program is stored in the cvs repository
 cvs_repository VARCHAR(64),
-- Time when the program was entered into the cvs repository (GPS seconds)
 cvs_entry_time INTEGER,
-- User comment which describes the program
 comment VARCHAR(240),

-- INFORMATION ABOUT THIS INVOCATION OF THE PROGRAM
-- Flag to indicate whether it was run on-line (1) or off-line (0)
 is_online INTEGER NOT NULL WITH DEFAULT 0,
-- Node on which it was run
 node VARCHAR(48) NOT NULL,
page 7 of 41

LIGO-T990101-02
-- Unix username
 username CHAR(16) NOT NULL,
-- Unix process ID
 unix_procid INTEGER NOT NULL,
-- Start time (GPS seconds)
 start_time INTEGER NOT NULL,
-- End time (GPS seconds); not filled initially, but filled when process
-- exits gracefully
 end_time INTEGER,

-- Unique id to identify this program, generated by DB2 (not unix process ID)
 process_id CHAR(13) FOR BIT DATA NOT NULL,
-- Parameter set identifier. Permits an association between multiple
-- invocations of a program which use the same set of input parameters.
-- Probably not filled initially (because of timing issues if multiple
-- processes start at about the same time), but updated later.
 param_set INTEGER,

-- INFORMATION ABOUT THE DATA HANDLED BY THIS PROGRAM
-- Interferometer(s) from which data comes. In general, a process
-- knows in advance what interferometer’s data it is analyzing.
-- (This is necessary to retrieve frameset metadata, for instance.)
-- Make this variable long enough to indicate multiple interferometers.
-- (e.g. “H1H2L1V1”)
 ifos CHAR(12),

 CONSTRAINT process_pk
 PRIMARY KEY (program, start_time, node, unix_procid),

-- Need to explicitly create a unique index on process_id (since we are not
-- using it as the primary key) so that other tables can use it as a foreign
-- key.
 CONSTRAINT process_uni_pid
 UNIQUE (creator_db, process_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;

4.2. process_params Table Definition
CREATE TABLE process_params
(
-- This table contains input parameters for programs.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- Program name
 program CHAR(16) NOT NULL,
-- Unique process ID (not unix process ID)
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- The triplet will store the value of a single parameter.
-- One example might be param = “mass”, type=”REAL”
-- and value = “12345.6789”
 param VARCHAR(32) NOT NULL,
page 8 of 41

LIGO-T990101-02

nts to

n, which

ites
,

var-

e

meset
1.F
rument
s in
meset
g one
nter a

ss
 type VARCHAR(16) NOT NULL,
 value VARCHAR(64) NOT NULL,

-- The program name is not necessary to make the primary key unique, but
-- one will generally make a query about a particular program.
 CONSTRAINT procparams_pk
 PRIMARY KEY (program, creator_db, process_id, param),

-- Foreign key relationship to process table. The ‘ON DELETE CASCADE’
-- modifier means that if a row in the process table is deleted, then
-- all its associated parameters are deleted too.
 CONSTRAINT procparams_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id)
 ON DELETE CASCADE
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;

5 METADATA ABOUT RAW DATA
When preparing to do a diagnostic or science analysis, there are two main things that one wa
know:

• Where can I get the raw data for my analysis?

• What sections of the data are appropriate to use for my analysis?

These complementary concepts are addressed by two separate parts of the database desig
we call “framesets” and “segments”, respectively.

5.1. Physical Data Units: Framesets

The data acquisition system (DAQS) builds raw data into the standard frame format and wr
files containing multiple frames. The DAQS writes three different types of frame files (“full”
“analysis”, and “trend”) for each interferometer; off-line programs may repackage the data in
ious other ways. We refer to each file as a “frameset”; it has a unique name (e.g.
H1-627332233.F) which indicates the interferometer, the GPS time at the beginning of th
file, and a suffix indicating the contents (F for “full DAQS output” in this case). Framesets from
the same interferometer and with the same general contents are grouped together as a “fra
group” for easy specification; for example, a user may request all framesets in the group H
between the times 627332233 and 627418633. (The channel list, sampling rates, and inst
configurationmustbe the same for all frames in a given frameset. However, minor difference
channel lists should not prevent two framesets from being considered as part of the same fra
group, if they were created for the same purpose. Also, a frameset is permitted to be missin
or more frames, though in practice we may decide to start a new frameset when we encou
missing frame.) Basic information about each frameset is recorded in theframeset table, while
information about its origin and contents is stored in theframeset_writer and
frameset_chanlist tables, respectively. Frameset locations (on disk, on tape, in the hp
page 9 of 41

LIGO-T990101-02

in
cation
ts

in the

an
 add a
r-
st stop

given a
nnel,

tents.
rite

s as far
inciple,
m the
put
stream

ple-
archive, etc.) are listed in theframeset_loc table; note that a given frameset may be located
more than one place, and the place(s) may change over time. For example, the physical lo
of a tape should be updated when it is sent from a site to the central archive, while framese
which are deleted from disk should have theirframeset_loc entries deleted as well.

Each process which intends to create framesets must, at initialization time, make an entry
frameset_writer table. This table can then be queried to get a list of frameset groups,
though one must use theDISTINCT modifier with the query to get the desired list since there c
be multiple processes which created parts of the same frameset group. (We might want to
frameset_groups table to allow a more straightforward listing and to keep summary info
mation about each frameset group, such as the number of framesets, earliest start time, late
time; it should be possible to set up DB2 triggers to maintain such a table automatically.)

In the current design, the channel list applicable for a given frameset is stored in the
frameset_chanlist table in a character large object (“CLOB”), along with the sampling
rate for each channel. Derived pseudo-channels are perfectly acceptable as long as each is
unique descriptive name. DB2 allows one to ask whether the CLOB includes a specific cha
using theLIKE predicate, although there is no good way to check the sampling rate.

Note that the frameset-related tables support the creation of new framesets with arbitrary con
Thus, for example, one might extract the seismic channels from the full data stream and w
them to framesets with names likeH0-627332233.SEIS (i.e. frameset groupH0.SEIS).
Similarly, any “reduced data sets” are treated the same as the standard DAQS output stream
as the database is concerned. For any given analysis, the list of channels needed can, in pr
be used to construct a database query to determine what framesets should be retrieved fro
archive. This makes it possible to consider building a “smart” archive which splits up the in
data into groups of related channels for storage on tape, then assembles a customized data
in response to a user request with minimal waste of input/output resources. Whether to im
ment such a scheme has yet to be determined.

5.1.1. frameset_chanlist Table Definition
CREATE TABLE frameset_chanlist
(
-- List of channels included in a frameset.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- Unique process ID of the process which submits the chanlist info
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- Frameset group for which this channel list applies
-- (But note that one frameset group could have several different channel
-- lists for data taken at different times)
 frameset_group CHAR(48) NOT NULL,
-- Validity range (in GPS seconds) for this channel list
 start_time INTEGER,
 end_time INTEGER,

-- Unique identifier for this channel list
 chanlist_id CHAR(13) FOR BIT DATA NOT NULL,
page 10 of 41

LIGO-T990101-02
-- Channel list, with modifiers and sampling rates. Separated by spaces.
-- Examples of items in the list:
-- ‘H2:PEM-LVEA_SEISX 256’ Raw data stream
-- ‘H2:PEM-LVEA_SEISX 16’ Decimated
-- ‘H2:PEM-LVEA_SEISX.LOWPASS(10.0) 16’ Filtered and decimated
-- List is stored in a Character Large OBject (CLOB).
 chanlist CLOB(512K),
-- Length of channel list in bytes (0 if the CLOB is empty)
 chanlist_length INTEGER NOT NULL,

 CONSTRAINT fschanlist_pk
 PRIMARY KEY (creator_db, chanlist_id),

 CONSTRAINT fschanlist_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- The following line ensures that replication will work properly on any
-- LONG VARCHAR columns that we might add to this table in the future.
ALTER TABLE frameset_chanlist
 DATA CAPTURE CHANGES INCLUDE LONGVAR COLUMNS
;

5.1.2. frameset_writer Table Definition
CREATE TABLE frameset_writer
(
-- List of processes which create framesets. Note that multiple processes
-- can write framesets in the same frameset_group.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROGRAM WHICH IS WRITING FRAMESETS
-- Program name
 program CHAR(16) NOT NULL,
-- Unique process ID
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- INFORMATION ABOUT THE FRAMESETS BEING WRITTEN
-- Base name for this group of framesets (e.g. ‘H2.F’)
 frameset_group CHAR(48) NOT NULL,
-- Source of this data. Use ‘DAQS’ for original raw data, otherwise the
-- name of the frameset_group from which this new frameset_group is derived.
-- If the new frameset_group is derived from multiple frameset_groups, list
-- them all, separated by spaces.
 data_source VARCHAR(240) NOT NULL,
-- Interferometer(s) with information in the frames
 ifos CHAR(12),

-- Optional user comment about this frameset_group
 comment VARCHAR(240),
page 11 of 41

LIGO-T990101-02
 CONSTRAINT fswriter_pk
 PRIMARY KEY (frameset_group, creator_db, process_id),

 CONSTRAINT fswriter_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Also create a clustering index for quicker scanning
CREATE INDEX fswriter_ind_fsgrp ON frameset_writer(frameset_group) CLUSTER;

5.1.3. frameset Table Definition
CREATE TABLE frameset
(
-- A “frameset” is a set of data frames contained in the same file. It is
-- the smallest unit of raw data which can be read and analyzed, since
-- dictionary information stored at the beginning of the file is needed to
-- interpret frames appearing later in the file.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- Unique process ID of the process which wrote this frameset
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- Base name for the group to which this frameset belongs (e.g. ‘H2.F’)
 frameset_group CHAR(48) NOT NULL,

-- INFORMATION ABOUT THE CONTENTS OF THIS FRAMESET
-- Database which created chanlist entry (which may be different from the
-- database creating this frameset entry)
 chanlist_cdb INTEGER NOT NULL,
-- Channel set identifier
 chanlist_id CHAR(13) FOR BIT DATA,
-- Frameset start and end times, in GPS seconds and nanoseconds.
-- Note that end_time is the time at the END of the last frame
-- included in this frameset. Thus, these two times always differ
-- by at least the length of one frame.
 start_time INTEGER NOT NULL,
 start_time_ns INTEGER NOT NULL,
 end_time INTEGER NOT NULL,
 end_time_ns INTEGER NOT NULL,
-- Number of frames in frameset
 n_frames INTEGER NOT NULL,
-- Number of missing frames within frameset
 missing_frames INTEGER NOT NULL,
-- Size of the frameset, in bytes
 n_bytes INTEGER NOT NULL,

-- FILENAME FOR THIS FRAMESET
-- This uniquely identifies the frameset. No two different framesets
-- can have the same name (but if there are multiple copies of a
-- frameset in different places, they would have the same name).
-- Normally the name will consist of an interferometer code, a GPS time,
page 12 of 41

LIGO-T990101-02
-- and a suffix which indicates the frame type, e.g. ‘H2-628318531.F’.
 name VARCHAR(80) NOT NULL,

-- Note that (frameset_group,start_time) should be sufficient to uniquely
-- identify a frameset, but we include end_time in the primary key to
-- facilitate faster queries.
 CONSTRAINT frameset_pk
 PRIMARY KEY (frameset_group, start_time, end_time),

-- Also create a unique index for the frameset name
 CONSTRAINT frameset_uni_name
 UNIQUE (name),

 CONSTRAINT frameset_fk_fswrit
 FOREIGN KEY (frameset_group, creator_db, process_id)
 REFERENCES frameset_writer(frameset_group, creator_db, process_id),

 CONSTRAINT frameset_fk_chanli
 FOREIGN KEY (chanlist_cdb, chanlist_id)
 REFERENCES frameset_chanlist(creator_db, chanlist_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;

5.1.4. frameset_loc Table Definition
CREATE TABLE frameset_loc
(
-- Table to keep track of frameset locations. There can be more than one
-- location for a given frameset.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- Frameset name
 name VARCHAR(80) NOT NULL,

-- Media type (disk, hpss, 8mm, dvd,...)
 media_type CHAR(16) NOT NULL,
-- The node with the data (i.e. computer on which disk is mounted, or hpss
-- server); OR, in the case of removable media, this should be the media label
 node VARCHAR(48) NOT NULL,
-- Physical location of removable media (e.g. LHO, LLO, transit, CACR, ...)
 media_loc VARCHAR(48),
-- Status of the media (e.g. OK, broken, ...)
 media_status CHAR(8) WITH DEFAULT ‘OK’,
-- Full path and actual file name. OR, in the case of a tape without named
-- files, this should just be the frameset name again.
 fullname VARCHAR(128) NOT NULL,
-- File number (for tapes without named files)
 filenum INTEGER,
-- Decompression command (e.g. ‘gunzip *.tar.gz; tar xf *.tar’, where ‘*’
-- is replaced by the frameset name)
 decompress_cmd VARCHAR(128),

 CONSTRAINT fsloc_pk
page 13 of 41

LIGO-T990101-02

ween
, a
given

ed to
K
ith a
ssary
isting

a-
ata

t chan-
terpret
 pro-

meter.
y ele-
 vec-
 PRIMARY KEY (node, fullname),

 CONSTRAINT fsloc_fk_frameset
 FOREIGN KEY (name) REFERENCES frameset(name)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Also create a clustering index for quicker name lookup
CREATE INDEX fsloc_ind_name ON frameset_loc(name) CLUSTER;

5.2. Logical Data Units: Segments

Framesets are not a very suitable unit for characterizing the data, since the boundaries bet
framesets are often arbitrary, determined by trying to make files of a reasonable size. Also
given frameset refers to a specific set of channels, so there can be multiple framesets for any
time interval. Therefore, we define a separate construct called a “segment” which is intend
indicate a time interval with a common property, e.g. an interval during which the Hanford 2
interferometer is locked. Segments with the same property belong to a “segment group” w
descriptive name (e.g. “H2-locked”). (We also allow for a version number in case it is nece
to redetermine the segments in a segment group; the default should be to use the latest ex
version.) The database containssegment_definer andsegment tables which are analo-
gous to theframeset_writer andframeset tables described above. (It would be nice if
there were also asegment_group table, with one row per segment group, containing inform
tion like the number of segments, first start time and last end time, and the fraction of the d
included in segments.)

A typical analysis would loop over the segments in some segment group, determine what
framesets need to be read to do the desired analysis for each segment (depending on wha
nels are needed), and retrieve the data. It would be desirable to provide a mechanism to in
logical combinations of segment groups (e.g. “H1-locked and H2-locked and L1-locked”) to
duce a derived set of segments.

Note that segments can be used to represent elements of the “state vector” for an interfero
This may, in fact, be the best way to store state-vector information, depending on how man
ments are envisioned. The current design does not provide any other place to store “state
tors”.

5.2.1. segment_definer Table Definition
CREATE TABLE segment_definer
(
-- List of processes which define segments. Note that multiple processes
-- can define segments in the same segment_group.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROGRAM WHICH IS DEFINING SEGMENTS
-- Program name
 program CHAR(16) NOT NULL,
page 14 of 41

LIGO-T990101-02
-- Unique process ID
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- INFORMATION ABOUT THE SEGMENTS BEING DEFINED
-- Descriptive name for this group of segments (e.g. ‘H2-locked’)
 segment_group CHAR(48) NOT NULL,
-- Version number for segment group (to allow re-evaluation)
 version INTEGER NOT NULL,
-- Interferometer(s) for which these segments are meaningful
 ifos CHAR(12),

-- Optional user comment about this segment_group
 comment VARCHAR(240),

 CONSTRAINT segdef_pk
 PRIMARY KEY (segment_group, version, creator_db, process_id),

 CONSTRAINT segdef_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Also create a clustering index for quicker scanning
CREATE INDEX segdef_ind_seggrp
 ON segment_definer(segment_group, version) CLUSTER;

5.2.2. segment Table Definition
CREATE TABLE segment
(
-- A “segment” is a time interval which is meaningful for some reason. For
-- example, it may indicate a period during which an interferometer is locked.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- Unique process ID of the process which defined this segment
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- Segment group (e.g. ‘H2-locked’) and version to which this segment belongs
 segment_group CHAR(48) NOT NULL,
 version INTEGER NOT NULL,

-- INFORMATION ABOUT THIS SEGMENT
-- Segment start and end times, in GPS seconds and nanoseconds.
 start_time INTEGER NOT NULL,
 start_time_ns INTEGER NOT NULL,
 end_time INTEGER NOT NULL,
 end_time_ns INTEGER NOT NULL,

-- Note that (segment_group,start_time) should be sufficient to uniquely
-- identify a segment, but we include end_time in the primary key to
-- facilitate faster queries.
 CONSTRAINT segment_pk
 PRIMARY KEY (segment_group, version, start_time, end_time),
page 15 of 41

LIGO-T990101-02

x, min,
val to

y
ked”
t be

e

 CONSTRAINT segment_fk_segdef
 FOREIGN KEY (segment_group, version, creator_db, process_id)
 REFERENCES
 segment_definer(segment_group, version, creator_db, process_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;

6 SUMMARY INFORMATION
It will be useful to be able to store various summary information about intervals of data. At
present, tables are provided to store arbitrary scalar values; standard channel statistics (ma
mean, rms, etc.); spectra (with sizes up to 512 kilobytes); and text comments. The time inter
which the summary information applies may correspond to a frameset listed in theframeset
table or to a segment listed in thesegment table, but neither is required. For example, one ma
wish to store the rms seismic noise (perhaps after applying a low-pass filter) for each “H2-loc
segment, or simply for each 30-minute interval while data is being collected. The latter migh
done on-line by a GDS data-monitoring process, for instance, which does not know how th
DAQS is dividing up the data into framesets as it writes to disk.

6.1. summ_value Table Definition
CREATE TABLE summ_value
(
-- Table to record a value about a particular time interval

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROCESS WHICH RECORDED THE VALUE
-- Program name
 program CHAR(16) NOT NULL,
-- Unique process ID
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- TIME INTERVAL FROM WHICH THIS VALUE WAS CALCULATED
-- Group name for frameset which determined this time interval, if any
 frameset_group VARCHAR(48),
-- Group and version of segment which determined this time interval, if any
 segment_group VARCHAR(128),
 version INTEGER,
-- Start and end times (in GPS seconds and nanoseconds)
 start_time INTEGER NOT NULL,
 start_time_ns INTEGER NOT NULL,
 end_time INTEGER NOT NULL,
 end_time_ns INTEGER NOT NULL,

-- THE SUMMARY VALUE
-- Site or interferometer to which this applies (H0, H1, H2, L0, L1)
 ifo CHAR(2) NOT NULL,
-- Descriptive name (does not have to indicate interferometer)
page 16 of 41

LIGO-T990101-02
 name CHAR(32) NOT NULL,
-- The value itself (must be a real number)
 value REAL NOT NULL,
-- Optional comment
 comment VARCHAR(80),

 CONSTRAINT summval_pk
 PRIMARY KEY (creator_db, process_id, ifo, name, start_time, end_time),

 CONSTRAINT summval_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id),
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Also create a clustering index for quicker queries
CREATE INDEX summval_ind_name
 ON summ_value(program, name, ifo, start_time) CLUSTER;

6.2. summ_statistics Table Definition
CREATE TABLE summ_statistics
(
-- Table to contain minimum, maximum, mean, rms, etc. for a single channel
-- (or pseudo-channel) for a specific time interval.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROCESS WHICH PRODUCED THESE STATISTICS
-- Program name
 program CHAR(16) NOT NULL,
-- Unique process ID
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- TIME INTERVAL FOR WHICH THESE STATISTICS WERE CALCULATED
-- Group name for frameset which determined this time interval, if any
 frameset_group VARCHAR(48),
-- Group and version of segment which determined this time interval, if any
 segment_group VARCHAR(128),
 version INTEGER,
-- Start and end times (in GPS seconds and nanoseconds)
 start_time INTEGER NOT NULL,
 start_time_ns INTEGER NOT NULL,
 end_time INTEGER NOT NULL,
 end_time_ns INTEGER NOT NULL,
-- Number of frames actually used to calculate statistics
 frames_used INTEGER,
-- Number of samples from which sums were accumulated (needed so that one
-- can convert between raw sums and mean, rms, etc.)
 samples INTEGER NOT NULL,

-- CHANNEL (OR PSEUDO-CHANNEL) NAME
-- The channel name should indicate the interferometer or site
 channel CHAR(48) NOT NULL,
page 17 of 41

LIGO-T990101-02
-- STATISTICS INFO
-- Minimum and maximum value of the channel during this time interval
 min_value DOUBLE,
 max_value DOUBLE,
-- Minimum and maximum CHANGE in the value of the channel
 min_delta DOUBLE,
 max_delta DOUBLE,
-- Minimum and maximum second-order finite difference
 min_deltadelta DOUBLE,
 max_deltadelta DOUBLE,
-- Mean, rms, 3rd and 4th moments
 mean DOUBLE,
 rms DOUBLE,
 moment3 DOUBLE,
 moment4 DOUBLE,

 CONSTRAINT summstat_pk
 PRIMARY KEY (creator_db, process_id, channel, start_time, end_time),

 CONSTRAINT summstat_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Also create a clustering index for quicker queries
CREATE INDEX summstat_ind_chan
 ON summ_statistics(channel, start_time) CLUSTER;

6.3. summ_spectrum Table Definition
CREATE TABLE summ_spectrum
(
-- Table to contain a summary spectrum derived from the data in a specific
-- time interval.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROCESS WHICH PRODUCED THIS SPECTRUM
-- Program name
 program CHAR(16) NOT NULL,
-- Unique process ID
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- TIME INTERVAL FROM WHICH THIS SPECTRUM WAS DERIVED
-- Group name for frameset which determined this time interval, if any
 frameset_group VARCHAR(48),
-- Group and version of segment which determined this time interval, if any
 segment_group VARCHAR(128),
 version INTEGER,
-- Start and end times (in GPS seconds and nanoseconds)
 start_time INTEGER NOT NULL,
 start_time_ns INTEGER NOT NULL,
 end_time INTEGER NOT NULL,
 end_time_ns INTEGER NOT NULL,
page 18 of 41

LIGO-T990101-02
-- Number of frames actually used to create spectrum
 frames_used INTEGER,

-- CHANNEL (OR PSEUDO-CHANNEL) NAME
-- The channel/pseudo-channel name should indicate the interferometer or site
 channel CHAR(48) NOT NULL,

-- SPECTRUM DATA AND ASSOCIATED INFO
-- Spectrum type (descriptive name)
 spectrum_type CHAR(32) NOT NULL,
-- The spectrum itself is stored in a Binary Large OBject (BLOB).
-- We specify COMPACT since we do not expect this ever to be updated.
 spectrum BLOB(512K) COMPACT NOT NULL,
-- Length of the spectrum (in bytes)
 spectrum_length INTEGER NOT NULL,

 CONSTRAINT summspect_pk
 PRIMARY KEY (creator_db, process_id, channel, spectrum_type,
 start_time, end_time),

 CONSTRAINT summspect_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Also create a clustering index for quicker queries
CREATE INDEX summspect_ind_chan
 ON summ_spectrum(channel, spectrum_type, start_time) CLUSTER;

6.4. summ_comment Table Definition
CREATE TABLE summ_comment
(
-- Table to attach a comment to a particular time interval

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROCESS WHICH ADDED THE COMMENT
-- Program name
 program CHAR(16) NOT NULL,
-- Unique process ID
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- TIME INTERVAL TO WHICH THIS COMMENT APPLIES
-- Group name for frameset which determined this time interval, if any
 frameset_group VARCHAR(48),
-- Group and version of segment which determined this time interval, if any
 segment_group VARCHAR(128),
 version INTEGER,
-- Start and end times (in GPS seconds and nanoseconds)
 start_time INTEGER NOT NULL,
 start_time_ns INTEGER NOT NULL,
 end_time INTEGER NOT NULL,
 end_time_ns INTEGER NOT NULL,
page 19 of 41

LIGO-T990101-02

-
appa-

 for
y be
n the
for a
tics of
terpre-

g two
al-to-

k for
 event
ugh
ach is

ce dif-
y are
-- COMMENT AND ASSOCIATED INFO
-- Name of person who made comment
 submitter VARCHAR(48) NOT NULL,
-- Timestamp at which comment was submitted (automatically set by DB2)
 submit_time TIMESTAMP WITH DEFAULT CURRENT TIMESTAMP,
-- Interferometer or site to which the comment applies
 ifo CHAR(2) NOT NULL,
-- The comment itself
 text VARCHAR(1000) NOT NULL,
-- Unique ID for this comment (needed for primary key)
 summ_comment_id CHAR(13) FOR BIT DATA NOT NULL,

 CONSTRAINT summcomm_pk
 PRIMARY KEY (creator_db, summ_comment_id),

 CONSTRAINT summcomm_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create an index based on time the comment refers to
CREATE INDEX summcomm_ind_time ON summ_comment(start_time, end_time);

7 GDS TRIGGERS AND ASTROPHYSICS EVENT
CANDIDATES

There will be a number of on-line data monitoring programs running while data is being col
lected, as a part of the Global Diagnostics System (GDS) intended to detect transients in the
ratus which could cause false gravity-wave signals. A single monitoring program may look
transients in many different channels, or with multiple algorithms. Additional programs ma
run off-line. (These programs may also generate summary information which will be stored i
database.) In general, a data monitoring program may filter signals in some way and look
signature exceeding a pre-set threshold, generating a “trigger”. The bottom-line characteris
a trigger may generally be expressed as a “size” and a “significance”, although the exact in
tation will depend on the trigger algorithm. Additional algorithm-specific results (e.g. from a
multi-parameter fit) may be stored in binary form in a variable-length character array.

Astrophysics event searches (currently envisioned to include inspirals, bursts, ringdowns,
“unmodeled-source” searches, and directed searches for periodic sources) will be done usin
basic approaches. The first approach is to first identify candidate events (above some sign
noise threshold) in the gravity-wave signal from each individual interferometer, and then loo
coincidences among the events found (i.e. among different interferometers and/or different
types). The first stage of this approach will nominally be done on-line in near-real-time, tho
there are likely to be off-line single-interferometer analyses as well. The second basic appro
to do a simultaneous analysis of the gravity-wave signals from multiple interferometers.

GDS triggers, and the various single- and multi-interferometer astrophysics searches, produ
ferent information, so we define several database tables to store the results. However, the
page 20 of 41

LIGO-T990101-02

en-
eters,

data in
 pro-
se
d (if

r a

eters

nsid-
 apply
pair

eter
he

ot
otherwise rather similar. (The use of the different terms “trigger” vs. “event” is entirely conv
tional.) Therefore, we let them all use the same tables to store filter descriptions, filter param
and additional information about the triggers/events found.

7.1. Filter Information

In general, a GDS data-monitor program or an astrophysics search program may filter the
multiple ways, and each of these filters may have its own set of parameters. Therefore, we
vide filter andfilter_params tables to store this information in a structured way. The
tables are filled at initialization time, and then each trigger/event can point to the filter it use
any). Note that each invocation of a program adds rows to thefilter table, even if they are the
same as from the last invocation, because there is no straightforward way to check whethe
given filter and set of parameter values is already in the database.

There is some freedom of choice about when one should enter filter descriptions and param
into thefilter andfilter_params tables. For some monitoring programs, the filtering
done may be implicit in the trigger algorithm, and any filter parameters could equally be co
ered to be process parameters. At the other extreme, a single inspiral-search process may
hundreds or thousands of different filters, but each filter might be completely described by the
of object masses which is stored with each event, so that an entry in thefilter table would not
provide any additional information. As a general rule, thefilter table should be used when-
ever a process applies multiple distinct algorithms (or the same algorithm with multiple param
sets), and thefilter_params table should be used to store any filter-specific parameters. T
filter table should also be used to store the name of the filter algorithm whenever it is n
obvious, e.g. for all “unmodeled-source” search algorithms.

7.1.1. filter Table Definition
CREATE TABLE filter
(
-- Table of filter instances used by GDS and astrophysics-search programs.
-- Note that this table should contain an entry for each invocation of the
-- program (similar to the process table). It is also possible for a single
-- process to use multiple filters with the same name but different
-- parameters.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROGRAM WHICH INITIALIZES THIS FILTER
-- Program name
 program CHAR(16) NOT NULL,
-- Program start time (GPS seconds)
 start_time INTEGER NOT NULL,
-- Process ID
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- INFORMATION ABOUT THIS FILTER
-- Filter name (e.g. “FFT”)
 filter CHAR(32) NOT NULL,
-- Unique identifier for this invocation of the filter
 filter_id CHAR(13) FOR BIT DATA NOT NULL,
page 21 of 41

LIGO-T990101-02
-- Parameter set identifier. Permits an association between multiple
-- invocations of a filter which use the same set of input parameters.
-- Probably not filled initially, but updated later.
 param_set INTEGER,

 CONSTRAINT filter_pk
 PRIMARY KEY (creator_db, filter_id),

-- Foreign key relationship to process table. The ‘ON DELETE CASCADE’
-- modifier means that if a row in the process table is deleted, then
-- all its associated filters are deleted too.
 CONSTRAINT filter_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id)
 ON DELETE CASCADE
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create a clustering index based on program name and start time
CREATE INDEX filter_ind_prog ON filter(program, start_time) CLUSTER;

7.1.2. filter_params Table Definition
CREATE TABLE filter_params
(
-- This table contains parameters for filters.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- Filter name
 filter CHAR(32) NOT NULL,
-- Unique process ID (not unix process ID)
 filter_id CHAR(13) FOR BIT DATA NOT NULL,

-- The triplet will store a single parameter.
-- One example might be name = “pole1”, type=”REAL”
-- and value = “12345.6789”
 param VARCHAR(32) NOT NULL,
 type VARCHAR(16) NOT NULL,
 value VARCHAR(64) NOT NULL,

 CONSTRAINT filtparam_pk
 PRIMARY KEY (creator_db, filter_id, param),

-- Foreign key relationship to filter table. The ‘ON DELETE CASCADE’
-- modifier means that if a row in the filter table is deleted, then
-- all its associated parameters are deleted too.
 CONSTRAINT filtparam_fk_pid
 FOREIGN KEY (creator_db, filter_id)
 REFERENCES filter(creator_db, filter_id)
 ON DELETE CASCADE
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;

page 22 of 41

LIGO-T990101-02

s.
on-line
7.2. GDS Triggers

As mentioned earlier, there are likely to be both on-line and off-line data monitoring program
They can all use the same database table. (Information about whether a process was run
or off-line is stored in theprocess table.)

7.2.1. gds_trigger Table Definition
CREATE TABLE gds_trigger
(
-- Triggers generated by data monitoring programs (on-line or off-line).

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROGRAM AND FILTER WHICH GENERATED THIS TRIGGER
-- Process ID
 process_id CHAR(13) FOR BIT DATA NOT NULL,
-- Filter identifier (indicates type of filter, plus parameters). May be null
 filter_id CHAR(13) FOR BIT DATA,
-- Unique descriptive trigger name.
 name CHAR(32) NOT NULL,
-- Sub-type of the trigger (e.g. a particular channel name?)
 subtype CHAR(32) NOT NULL,

-- INFORMATION ABOUT THIS PARTICULAR TRIGGER INSTANCE
-- Site or interferometer to which this trigger applies (H0, H1, H2, L0, L1)
 ifo CHAR(2) NOT NULL,
-- Time when the trigger detects a transient (GPS seconds and nanoseconds)
 start_time INTEGER NOT NULL,
 start_time_ns INTEGER NOT NULL,
-- Duration of the transient (seconds)
 duration REAL NOT NULL,
-- Priority of the trigger (meaning has yet to be defined)
 priority INTEGER NOT NULL,
-- Bitmask indicating what was done with this trigger (sent to operator
-- console, logged in database, etc.)
 disposition INTEGER,
-- Bottom-line trigger results, useful for querying. Exact interpretation
-- will depend on the particular trigger type.
 size REAL,
 significance REAL,
 frequency REAL,
-- Full result, e.g. parameters from a fit. User-defined binary format.
-- This will generally be very small (or NULL), so we prefer to store this
-- in a VARCHAR rather than in a BLOB.
 binarydata VARCHAR(1024) FOR BIT DATA,
-- Length of full result, in bytes (0 if no full_result is recorded)
 binarydata_length INTEGER NOT NULL,
-- A unique identifier for this trigger
 event_id CHAR(13) FOR BIT DATA NOT NULL,

 CONSTRAINT gdstrig_pk
 PRIMARY KEY (creator_db, event_id),
page 23 of 41

LIGO-T990101-02

hes
hich
ky
ed to
tood.
ddi-
al-

per-
h is
 CONSTRAINT gdstrig_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id),

-- Note that filter_id is allowed to be null, in which case no check is made.
 CONSTRAINT gdstrig_fk_filt
 FOREIGN KEY (creator_db, filter_id)
 REFERENCES filter(creator_db, filter_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create a clustering index based on time, etc.
CREATE INDEX gdstrig_ind_time ON gds_trigger(name, ifo, start_time) CLUSTER
;
-- Create an SQL trigger so that if a gds_trigger entry is deleted, any
-- associated sngl_datasource and/or sngl_transdata entries are deleted too.
-- Must be done this way because there is no foreign-key relationship.
CREATE TRIGGER gdstrig_tr_del
 AFTER DELETE ON gds_trigger
 REFERENCING OLD AS o
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 DELETE FROM sngl_datasource
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 DELETE FROM sngl_transdata
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 END
;

7.3. Single-Interferometer Astrophysics Event Candidates

As mentioned earlier, these database tables are designed for recording the results of searc
based on the gravity-wave channels from individual interferometers. Thus, interpretation w
depends on post-processing or combining information from multiple interferometers (e.g. s
coordinates) is not included in these tables. The “properties of the event” columns are intend
contain the quantities reported by the event-finding algorithms, as they are currently unders
It is less clear what properties would be reported by “unmodeled-source” searches, so an a
tional table (sngl_unmodeled_v) is provided as a place to store an arbitrary set of result v
ues, if needed.

“Directed” searches for a pre-selected set of possible periodic sources are expected to be
formed on-line. In this case an “event” is most likely a long time interval (several days?) whic
integrated over to look for a significant signal.

7.3.1. sngl_inspiral Table Definition
CREATE TABLE sngl_inspiral
(
-- Event table for single-interferometer binary-inspiral search.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,
page 24 of 41

LIGO-T990101-02
-- INFORMATION ABOUT THE PROCESS WHICH GENERATED THIS EVENT
-- Process which generated this event
 process_id CHAR(13) FOR BIT DATA NOT NULL,
-- Filter identifier (indicates type of filter, plus parameters). May be null
 filter_id CHAR(13) FOR BIT DATA,
-- Interferometer
 ifo CHAR(2) NOT NULL,

-- TIME OF THE EVENT
-- The coalescence time of this inspiral event (GPS seconds and nanoseconds)
 end_time INTEGER NOT NULL,
 end_time_ns INTEGER NOT NULL,
-- The time duration of this inspiral event (seconds)
 duration REAL NOT NULL,
-- Time when filter output reaches maximum value (GPS seconds and nanoseconds)
 fout_peak_time INTEGER NOT NULL,
 fout_peak_time_ns INTEGER NOT NULL,
-- duration of filter used to produce event (seconds)
 filter_duration REAL NOT NULL,

-- PROPERTIES OF THE EVENT
-- Absolute signal amplitude (fractional strain)
 amplitude REAL NOT NULL,
-- Mass of the larger compact stellar object (in solar mass units)
 mass1 REAL NOT NULL,
-- Mass of the smaller (or equal) compact stellar object
 mass2 REAL NOT NULL,
-- Coalescence phase angle (radians)
 coalescence_phase REAL,
-- Effective distance to the compact binary system (inferred from amplitude)
 eff_distance REAL,
-- Signal to noise ratio
 snr REAL,
-- Confidence variable
 confidence REAL,

-- Unique identifier for this event
 event_id CHAR(13) FOR BIT DATA NOT NULL,

 CONSTRAINT s_inspiral_pk
 PRIMARY KEY (creator_db, event_id),

 CONSTRAINT s_inspiral_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id),

-- Note that filter_id is allowed to be null, in which case no check is made.
 CONSTRAINT s_inspiral_fk_filt
 FOREIGN KEY (creator_db, filter_id)
 REFERENCES filter(creator_db, filter_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create a clustering index based on time
CREATE INDEX s_inspiral_ind_tim ON sngl_inspiral(ifo, end_time) CLUSTER
;
-- Create an SQL trigger so that if a sngl_inspiral entry is deleted, any
-- associated sngl_datasource and/or sngl_transdata entries are deleted too.
page 25 of 41

LIGO-T990101-02
-- Must be done this way because there is no foreign-key relationship.
CREATE TRIGGER s_inspiral_tr_del
 AFTER DELETE ON sngl_inspiral
 REFERENCING OLD AS o
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 DELETE FROM sngl_datasource
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 DELETE FROM sngl_transdata
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 END
;

7.3.2. sngl_burst Table Definition
CREATE TABLE sngl_burst
(
-- Event table for single-interferometer burst-event search.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROCESS WHICH GENERATED THIS EVENT
-- Process which generated this event
 process_id CHAR(13) FOR BIT DATA NOT NULL,
-- Filter identifier (indicates type of filter, plus parameters). May be null
 filter_id CHAR(13) FOR BIT DATA,
-- Interferometer
 ifo CHAR(2) NOT NULL,

-- TIME OF THE EVENT
-- The start time of this burst event (in GPS seconds and nanoseconds)
 start_time INTEGER NOT NULL,
 start_time_ns INTEGER NOT NULL,
-- The time duration of this burst event (seconds)
 duration REAL NOT NULL,

-- PROPERTIES OF THE EVENT
-- Center of frequency band in which observation is made (Hz)
 central_freq REAL,
-- Range of frequency observed (Hz)
 bandwidth REAL,
-- Absolute signal amplitude (fractional strain)
 amplitude REAL NOT NULL,
-- Signal to noise ratio
 snr REAL,
-- Confidence variable
 confidence REAL,

-- Unique identifier for this event
 event_id CHAR(13) FOR BIT DATA NOT NULL,

 CONSTRAINT s_burst_pk
 PRIMARY KEY (creator_db, event_id),

 CONSTRAINT s_burst_fk_pid
 FOREIGN KEY (creator_db, process_id)
page 26 of 41

LIGO-T990101-02
 REFERENCES process(creator_db, process_id),

-- Note that filter_id is allowed to be null, in which case no check is made.
 CONSTRAINT s_burst_fk_filt
 FOREIGN KEY (creator_db, filter_id)
 REFERENCES filter(creator_db, filter_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create a clustering index based on time
CREATE INDEX s_burst_ind_time ON sngl_burst(ifo, start_time) CLUSTER
;
-- Create an SQL trigger so that if a sngl_burst entry is deleted, any
-- associated sngl_datasource and/or sngl_transdata entries are deleted too.
-- Must be done this way because there is no foreign-key relationship.
CREATE TRIGGER s_burst_tr_del
 AFTER DELETE ON sngl_burst
 REFERENCING OLD AS o
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 DELETE FROM sngl_datasource
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 DELETE FROM sngl_transdata
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 END
;

7.3.3. sngl_ringdown Table Definition
CREATE TABLE sngl_ringdown
(
-- Event table for single-interferometer ringdown search.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROCESS WHICH GENERATED THIS EVENT
-- Process which generated this event
 process_id CHAR(13) FOR BIT DATA NOT NULL,
-- Filter identifier (indicates type of filter, plus parameters). May be null
 filter_id CHAR(13) FOR BIT DATA,
-- Interferometer
 ifo CHAR(2) NOT NULL,

-- TIME OF THE EVENT
-- The start time of this ringdown event (in GPS seconds and nanoseconds)
 start_time INTEGER NOT NULL,
 start_time_ns INTEGER NOT NULL,
-- The time duration of this ringdown event (seconds)
 duration REAL NOT NULL,

-- PROPERTIES OF THE EVENT
-- Absolute signal amplitude (fractional strain)
 amplitude REAL NOT NULL,
-- Fundamental ringdown frequency
 frequency REAL NOT NULL,
page 27 of 41

LIGO-T990101-02
-- Quality factor
 q REAL NOT NULL,
-- Black hole mass (in solar mass units)
 mass REAL,
-- Signal to noise ratio
 snr REAL,
-- Confidence variable
 confidence REAL,

-- Unique identifier for this event
 event_id CHAR(13) FOR BIT DATA NOT NULL,

 CONSTRAINT s_ringdown_pk
 PRIMARY KEY (creator_db, event_id),

 CONSTRAINT s_ringdown_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id),

-- Note that filter_id is allowed to be null, in which case no check is made.
 CONSTRAINT s_ringdown_fk_filt
 FOREIGN KEY (creator_db, filter_id)
 REFERENCES filter(creator_db, filter_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create a clustering index based on time
CREATE INDEX s_ringdown_ind_tim ON sngl_ringdown(ifo, start_time) CLUSTER
;
-- Create an SQL trigger so that if a sngl_ringdown entry is deleted, any
-- associated sngl_datasource and/or sngl_transdata entries are deleted too.
-- Must be done this way because there is no foreign-key relationship.
CREATE TRIGGER s_ringdown_tr_del
 AFTER DELETE ON sngl_ringdown
 REFERENCING OLD AS o
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 DELETE FROM sngl_datasource
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 DELETE FROM sngl_transdata
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 END
;

7.3.4. sngl_unmodeled Table Definition
CREATE TABLE sngl_unmodeled
(
-- Event table for searches for “unmodeled” sources, i.e. sources for which
-- the waveform is unknown. There will probably be several algorithms in
-- use, so this table includes the algorithm name.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROCESS WHICH GENERATED THIS EVENT
page 28 of 41

LIGO-T990101-02
-- Process which generated this event
 process_id CHAR(13) FOR BIT DATA NOT NULL,
-- Descriptive name of the particular algorithm which flagged this event
 name CHAR(32) NOT NULL,
-- Filter identifier (indicates type of filter, plus parameters). May be null
 filter_id CHAR(13) FOR BIT DATA,
-- Interferometer
 ifo CHAR(2) NOT NULL,

-- TIME OF THE EVENT
-- The start time of this event (in GPS seconds and nanoseconds)
 start_time INTEGER NOT NULL,
 start_time_ns INTEGER NOT NULL,
-- The time duration of this event (seconds)
 duration REAL NOT NULL,

-- PROPERTIES OF THE EVENT
-- Absolute signal amplitude (fractional strain)
 amplitude REAL NOT NULL,
-- Signal to noise ratio.
 snr REAL,
-- Confidence variable
 confidence REAL,
-- Note: additional properties may be recorded in the sngl_unmodeled_v table.

-- Unique identifier for this event
 event_id CHAR(13) FOR BIT DATA NOT NULL,

 CONSTRAINT s_unmod_pk
 PRIMARY KEY (creator_db, event_id),

 CONSTRAINT s_unmod_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id),

-- Note that filter_id is allowed to be null, in which case no check is made.
 CONSTRAINT s_unmod_fk_filt
 FOREIGN KEY (creator_db, filter_id)
 REFERENCES filter(creator_db, filter_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create a clustering index based on time, etc.
CREATE INDEX s_unmod_ind_time ON sngl_unmodeled(name, ifo, start_time) CLUSTER
;
-- Create an SQL trigger so that if a sngl_unmodeled entry is deleted, any
-- associated sngl_datasource and/or sngl_transdata entries are deleted too.
-- Must be done this way because there is no foreign-key relationship.
CREATE TRIGGER s_unmod_tr_del
 AFTER DELETE ON sngl_unmodeled
 REFERENCING OLD AS o
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 DELETE FROM sngl_datasource
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 DELETE FROM sngl_transdata
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 END
page 29 of 41

LIGO-T990101-02
;

7.3.5. sngl_unmodeled_v Table Definition
CREATE TABLE sngl_unmodeled_v
(
-- Generic table to store additional values describing events found by a
-- search for “unmodeled” sources.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- Unique identifier for the source-independent event
 event_id CHAR(13) FOR BIT DATA NOT NULL,
-- Site or interferometer to which this applies (H0, H1, H2, L0, L1)
 ifo CHAR(2) NOT NULL,

-- Descriptive name of the result variable
 name CHAR(32) NOT NULL,
-- The value of the result (must be a real number)
 value REAL NOT NULL,

 CONSTRAINT s_unmodv_pk
 PRIMARY KEY (creator_db, event_id, name),

 CONSTRAINT s_unmodv_fk_unmod
 FOREIGN KEY (creator_db, event_id)
 REFERENCES sngl_unmodeled(creator_db, event_id)
 ON DELETE CASCADE
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create a clustering index based on event id
CREATE INDEX s_unmodv_ind_eid ON sngl_unmodeled_v(event_id) CLUSTER;

7.3.6. sngl_dperiodic Table Definition
CREATE TABLE sngl_dperiodic
(
-- Event table for single-interferometer directed periodic-source search.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROCESS WHICH GENERATED THIS EVENT
-- Process which generated this event
 process_id CHAR(13) FOR BIT DATA NOT NULL,
-- Filter identifier (indicates type of filter, plus parameters). May be null
 filter_id CHAR(13) FOR BIT DATA,
-- Interferometer
 ifo CHAR(2) NOT NULL,

-- TIME PERIOD FOR THIS “EVENT” (generally a long integration period)
-- Start and and time (GPS seconds and nanoseconds)
 start_time INTEGER NOT NULL,
page 30 of 41

LIGO-T990101-02
 start_time_ns INTEGER NOT NULL,
 end_time INTEGER NOT NULL,
 end_time_ns INTEGER NOT NULL,
-- Duration (seconds)
 duration REAL NOT NULL,

-- PROPERTIES OF THE EVENT
-- Name of target
 target_name CHAR(32),
-- Sky position
 sky_ra REAL NOT NULL,
 sky_dec REAL NOT NULL,
-- Frequency
 frequency REAL NOT NULL,
-- Absolute signal amplitude (fractional strain)
 amplitude REAL NOT NULL,
-- Signal phase with respect to beginning of time interval
 phase REAL NOT NULL,
-- Signal to noise ratio
 snr REAL,
-- Confidence variable
 confidence REAL,

-- Unique identifier for this event
 event_id CHAR(13) FOR BIT DATA NOT NULL,

 CONSTRAINT s_dperiod_pk
 PRIMARY KEY (creator_db, event_id),

 CONSTRAINT s_dperiod_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id),

-- Note that filter_id is allowed to be null, in which case no check is made.
 CONSTRAINT s_dperiod_fk_filt
 FOREIGN KEY (creator_db, filter_id)
 REFERENCES filter(creator_db, filter_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create a clustering index based on time, etc.
CREATE INDEX s_dperiod_ind_time
 ON sngl_dperiodic(target_name, ifo, start_time, end_time) CLUSTER
;
-- Create an SQL trigger so that if a sngl_dperiodic entry is deleted, any
-- associated sngl_datasource and/or sngl_transdata entries are deleted too.
-- Must be done this way because there is no foreign-key relationship.
CREATE TRIGGER s_dperiod_tr_del
 AFTER DELETE ON sngl_dperiodic
 REFERENCING OLD AS o
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 DELETE FROM sngl_datasource
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 DELETE FROM sngl_transdata
 WHERE event_id = o.event_id AND creator_db = o.creator_db;
 END
;

page 31 of 41

LIGO-T990101-02

nd
 the
 verify

trig-
put
tiple

e time
7.4. Additional Information About Single-Interferometer Trig-
gers/Events

Two additional tables are provided to store additional information about triggers/events, if
desired. Thesngl_datasource table can be used to indicate what input data (channel(s) a
time interval) led to the trigger decision. In general it will specify a longer time interval than
duration of the candidate event itself, and may be useful to indicate what data is needed to
or refine the trigger decision in off-line analysis. There can be at most onesngl_datasource
entry per event (but it can list multiple channels).

Thesngl_transdata table can be used to store the actual time series which exceeded the
ger threshold, e.g. the output of a digital filter or a pseudo-channel derived from multiple in
channels. The size of the time series is limited to 1 megabyte. However, there can be mul
sngl_transdata entries per event, if desired. Heavy use of thesngl_transdata table
could rapidly fill up the database, so it should be used only in cases where regenerating th
series would be computationally expensive.

7.4.1. sngl_datasource Table Definition
CREATE TABLE sngl_datasource
(
-- Pointer to specific data which prompted a single_interferometer trigger.
-- That is, this indicates what data the program was looking at when it
-- decided to generate the trigger. In general, this datasource time
-- interval will be longer than the duration of the transient it contains.
-- Note that there can be only one sngl_datasource entry per trigger, but
-- it can list multiple channels.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- Table with event to which this applies (gds_trigger, sngl_inspiral, etc.)
 event_table CHAR(18) NOT NULL,
-- Trigger/event identifier
 event_id CHAR(13) FOR BIT DATA NOT NULL,
-- Site or interferometer to which this applies (H0, H1, H2, L0, L1)
 ifo CHAR(2) NOT NULL,

-- Source of this data. Use ‘DAQS’ for original raw data, otherwise the
-- name of the frameset_group read. If multiple frameset_groups were read,
-- list them all, separated by spaces.
 data_source VARCHAR(240),
-- Channel(s) the data come from. If more than one, list them all,
-- separated by spaces.
 channels VARCHAR(512) NOT NULL,

-- The beginning of the time interval for the data (GPS seconds/nanoseconds)
 start_time INTEGER NOT NULL,
 start_time_ns INTEGER NOT NULL,
-- The end of the time interval for the data (GPS seconds/nanoseconds)
 end_time INTEGER NOT NULL,
 end_time_ns INTEGER NOT NULL,
page 32 of 41

LIGO-T990101-02
 CONSTRAINT s_datasource_pk
 PRIMARY KEY (creator_db, event_id)

-- We cannot set up a foreign key based on event_id since the parent
-- table varies. Could maybe set up a trigger to do the equivalent check.
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;

7.4.2. sngl_transdata Table Definition
CREATE TABLE sngl_transdata
(
-- Record of transformed data upon which trigger decision was based. There
-- may be multiple entries for a particular trigger instance, if desired.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- Table with event to which this applies (gds_trigger, sngl_inspiral, etc.)
 event_table CHAR(18) NOT NULL,
-- Trigger/event identifier
 event_id CHAR(13) FOR BIT DATA NOT NULL,
-- Site or interferometer to which this applies (H0, H1, H2, L0, L1)
 ifo CHAR(2) NOT NULL,
-- One word or a few words to indicate what is stored in this table
 transdata_name CHAR(16) NOT NULL,

-- X-axis parameters;
-- number of values in this tranformeddata
 num_bins INTEGER NOT NULL,
-- starting and ending values of x-axis
 x_start DOUBLE NOT NULL,
 x_end DOUBLE NOT NULL,
-- Units of x axis (e.g. ‘GPS seconds’, ‘Hz’, etc.)
 x_units CHAR(16) NOT NULL,
-- Y-axis parameters;
 data_type CHAR(16) NOT NULL,
 y_units CHAR(16) NOT NULL,
-- Transformed data itself is stored in a Binary Large OBject (BLOB).
-- We specify COMPACT since we do not expect this ever to be updated.
 transdata BLOB(1M) COMPACT NOT NULL,
-- Length of data, in bytes
 transdata_length INTEGER NOT NULL,

 CONSTRAINT s_transdata_pk
 PRIMARY KEY (creator_db, event_id, transdata_name)

-- We cannot set up a foreign key based on event_id since the parent
-- table varies. Could maybe set up a trigger to do the equivalent check.
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;

page 33 of 41

LIGO-T990101-02

e to
exam-
with
ote
 We
ch
 by a
 sophis-
dence
er of
 of a
e phi-

idates
ns are
ent
f the
ot

post-
hape.
7.5. Coincidences of Single-Interferometer Events

After event candidates have been identified for individual interferometers, the next step will b
look for coincidences between interferometers and between events of different types. For
ple, we would like to check for an inspiral candidate found by more than one interferometer (
consistent signal amplitudes and mass combinations), possibly followed by a ringdown. (N
that theend time of the inspiral should be compared against the start time of the ringdown.)
would also like to note any instrumental/environmental trigger at nearly the same time, whi
might have caused a false gravity-wave signature. This correlation procedure will be done
stand-alone program, and the results stored in the database. (SQL is not suited to doing a
ticated correlation in any reasonable manner.) One will have to make choices about coinci
windows (probably wider for GDS triggers than for astrophysics events), the minimum numb
event candidates to be considered a coincidence, how to handle multiple event candidates
given type at the same time (e.g. different mass combinations for an inspiral search), etc. Th
losophy should be to make a highly inclusive list ofpossible coincidences which will be corre-
lated more precisely by off-line re-analysis of the data.

The following section presents a database table to point to the various individual event cand
which make up a coincidence. Only LIGO interferometers are included at present. Colum
defined to contain information about a coincident gamma-ray burst, if any; other external ev
types could be added as well. The composite time, “quality” of the coincidence, properties o
astrophysical system, and sky position information are included in the table, although it is n
clear whether these are all evaluated during the coincidence-finding process, or only after
processing. This table definition is likely to be modified as the coincidence analysis takes s

7.5.1. coinc_sngl Table Definition
CREATE TABLE coinc_sngl
(
-- List of approximate coincidences between single-interferometer events
-- from different interferometers and/or of different event types.
-- Currently, only includes LIGO interferometers plus information about
-- an associated gamma-ray burst, if any.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROCESS WHICH GENERATED THIS ENTRY
-- Process which generated this event
 process_id CHAR(13) FOR BIT DATA NOT NULL,

-- Unique identifier for this coincidence
 coinc_id CHAR(13) FOR BIT DATA NOT NULL,

-- Single-interferometer events which make up this coincidence (NULL if no
-- match). Note that we must specify the “creator_db” for each individual
-- event, since it may not be the same as the database on which this
-- coincidence record is being created.
 h1_inspiral_cdb INTEGER,
 h1_inspiral_id CHAR(13) FOR BIT DATA,
 h1_burst_cdb INTEGER,
 h1_burst_id CHAR(13) FOR BIT DATA,
 h1_ringdown_cdb INTEGER,
page 34 of 41

LIGO-T990101-02
 h1_ringdown_id CHAR(13) FOR BIT DATA,
 h1_unmodeled_cdb INTEGER,
 h1_unmodeled_id CHAR(13) FOR BIT DATA,
 h1_gdstrig_cdb INTEGER,
 h1_gdstrig_id CHAR(13) FOR BIT DATA,

 h2_inspiral_cdb INTEGER,
 h2_inspiral_id CHAR(13) FOR BIT DATA,
 h2_burst_cdb INTEGER,
 h2_burst_id CHAR(13) FOR BIT DATA,
 h2_ringdown_cdb INTEGER,
 h2_ringdown_id CHAR(13) FOR BIT DATA,
 h2_unmodeled_cdb INTEGER,
 h2_unmodeled_id CHAR(13) FOR BIT DATA,
 h2_gdstrig_cdb INTEGER,
 h2_gdstrig_id CHAR(13) FOR BIT DATA,

 l1_inspiral_cdb INTEGER,
 l1_inspiral_id CHAR(13) FOR BIT DATA,
 l1_burst_cdb INTEGER,
 l1_burst_id CHAR(13) FOR BIT DATA,
 l1_ringdown_cdb INTEGER,
 l1_ringdown_id CHAR(13) FOR BIT DATA,
 l1_unmodeled_cdb INTEGER,
 l1_unmodeled_id CHAR(13) FOR BIT DATA,
 l1_gdstrig_cdb INTEGER,
 l1_gdstrig_id CHAR(13) FOR BIT DATA,

-- Interferometer coincidence time in GPS seconds/nanoseconds
 coinc_time INTEGER NOT NULL,
 coinc_time_ns INTEGER NOT NULL,

-- Variable describing the quality of the coincidence
 coinc_quality REAL NOT NULL,

-- Direction of Hanford-to-Livingston ray at time of event
-- (i.e. the central axis of the cone on which the source lies)
 ligo_axis_ra REAL,
 ligo_axis_dec REAL,
-- Wave arrival angle with respect to Hanford-to-Livingston ray, and error
 ligo_angle REAL,
 ligo_angle_sig REAL,

-- Gamma-ray burst event, if any
 grb_id VARCHAR(64),
 grb_time INTEGER,
 grb_time_ns INTEGER,
-- Location of gamma-ray burst in the sky, if applicable
 grb_sky_ra REAL,
 grb_sky_dec REAL,

-- Place to indicate any other non-LIGO event in coincidence, if any
 other_external VARCHAR(80),

-- PHYSICAL PROPERTIES FOR EVENT
-- Masses of inspiral objects
 inspiral_mass1 REAL,
 inspiral_mass2 REAL,
-- Q value for ringdown
page 35 of 41

LIGO-T990101-02
 ringdown_q REAL,
-- Fundamental ringdown frequency
 ringdown_freq REAL,
-- Black hole mass from ringdown
 ringdown_mass REAL,

 CONSTRAINT coincs_pk
 PRIMARY KEY (creator_db, coinc_id),

 CONSTRAINT coincs_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id),

-- Foreign-key constraints are checked only for non-NULL values
 CONSTRAINT coincs_fk_h1in
 FOREIGN KEY (h1_inspiral_cdb, h1_inspiral_id)
 REFERENCES sngl_inspiral(creator_db, event_id),
 CONSTRAINT coincs_fk_h1bu
 FOREIGN KEY (h1_burst_cdb, h1_burst_id)
 REFERENCES sngl_burst(creator_db, event_id),
 CONSTRAINT coincs_fk_h1ri
 FOREIGN KEY (h1_ringdown_cdb, h1_ringdown_id)
 REFERENCES sngl_ringdown(creator_db, event_id),
 CONSTRAINT coincs_fk_h1un
 FOREIGN KEY (h1_unmodeled_cdb, h1_unmodeled_id)
 REFERENCES sngl_unmodeled(creator_db, event_id),
 CONSTRAINT coincs_fk_h1gds
 FOREIGN KEY (h1_gdstrig_cdb, h1_gdstrig_id)
 REFERENCES gds_trigger(creator_db, event_id),

 CONSTRAINT coincs_fk_h2in
 FOREIGN KEY (h2_inspiral_cdb, h2_inspiral_id)
 REFERENCES sngl_inspiral(creator_db, event_id),
 CONSTRAINT coincs_fk_h2bu
 FOREIGN KEY (h2_burst_cdb, h2_burst_id)
 REFERENCES sngl_burst(creator_db, event_id),
 CONSTRAINT coincs_fk_h2ri
 FOREIGN KEY (h2_ringdown_cdb, h2_ringdown_id)
 REFERENCES sngl_ringdown(creator_db, event_id),
 CONSTRAINT coincs_fk_h2un
 FOREIGN KEY (h2_unmodeled_cdb, h2_unmodeled_id)
 REFERENCES sngl_unmodeled(creator_db, event_id),
 CONSTRAINT coincs_fk_h2gds
 FOREIGN KEY (h2_gdstrig_cdb, h2_gdstrig_id)
 REFERENCES gds_trigger(creator_db, event_id),

 CONSTRAINT coincs_fk_l1in
 FOREIGN KEY (l1_inspiral_cdb, l1_inspiral_id)
 REFERENCES sngl_inspiral(creator_db, event_id),
 CONSTRAINT coincs_fk_l1bu
 FOREIGN KEY (l1_burst_cdb, l1_burst_id)
 REFERENCES sngl_burst(creator_db, event_id),
 CONSTRAINT coincs_fk_l1ri
 FOREIGN KEY (l1_ringdown_cdb, l1_ringdown_id)
 REFERENCES sngl_ringdown(creator_db, event_id),
 CONSTRAINT coincs_fk_l1un
 FOREIGN KEY (l1_unmodeled_cdb, l1_unmodeled_id)
 REFERENCES sngl_unmodeled(creator_db, event_id),
 CONSTRAINT coincs_fk_l1gds
page 36 of 41

LIGO-T990101-02

eter
eter,
low
e multi-
er)
 FOREIGN KEY (l1_gdstrig_cdb, l1_gdstrig_id)
 REFERENCES gds_trigger(creator_db, event_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create a clustering index based on time
CREATE INDEX coincs_ind_time ON coinc_sngl(coinc_time) CLUSTER;

7.6. Multi-Interferometer Astrophysics Event Searches

Event tables for multi-interferometer searches are very similar to those for single-interferom
searches, but with a column containing a list of interferometers rather than a single interferom
and with sky position information. Table definitions for inspiral and burst events are given be
as examples; other event types can be added as needed. For instance, there will certainly b
interferometer stochastic-background searches, but it is not clear at present how (or wheth
these should be represented in the database.

7.6.1. multi_inspiral Table Definition
CREATE TABLE multi_inspiral
(
-- Event table for multi-interferometer binary-inspiral search.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROCESS WHICH GENERATED THIS EVENT
-- Process which generated this event
 process_id CHAR(13) FOR BIT DATA NOT NULL,
-- Filter identifier (indicates type of filter, plus parameters). May be null
 filter_id CHAR(13) FOR BIT DATA,
-- Interferometers used for this search
 ifos CHAR(12) NOT NULL,

-- TIME OF THE EVENT
-- The coalescence time of this inspiral event (GPS seconds and nanoseconds)
 end_time INTEGER NOT NULL,
 end_time_ns INTEGER NOT NULL,
-- The time duration of this inspiral event (seconds)
 duration REAL NOT NULL,
-- Time when filter output reaches maximum value (GPS seconds and nanoseconds)
 fout_peak_time INTEGER NOT NULL,
 fout_peak_time_ns INTEGER NOT NULL,
-- duration of filter used to produce event (seconds)
 filter_duration REAL NOT NULL,

-- PROPERTIES OF THE EVENT
-- Absolute signal amplitude (fractional strain)
 amplitude REAL NOT NULL,
-- Mass of the larger compact stellar object (in solar mass units)
 mass1 REAL NOT NULL,
-- Mass of the smaller (or equal) compact stellar object
 mass2 REAL NOT NULL,
-- Coalescence phase angle (radians)
page 37 of 41

LIGO-T990101-02
 coalescence_phase REAL,
-- Effective distance to the compact binary system (inferred from amplitude)
 eff_distance REAL,
-- Signal to noise ratio
 snr REAL,
-- Confidence variable
 confidence REAL,

-- Direction of Hanford-to-Livingston ray at time of event
-- (i.e. the central axis of the cone on which the source lies)
 ligo_axis_ra REAL,
 ligo_axis_dec REAL,
-- Wave arrival angle with respect to Hanford-to-Livingston ray, and error
 ligo_angle REAL,
 ligo_angle_sig REAL,

-- Unique identifier for this event
 event_id CHAR(13) FOR BIT DATA NOT NULL,

 CONSTRAINT m_inspiral_pk
 PRIMARY KEY (creator_db, event_id),

 CONSTRAINT m_inspiral_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id),

-- Note that filter_id is allowed to be null, in which case no check is made.
 CONSTRAINT m_inspiral_fk_filt
 FOREIGN KEY (creator_db, filter_id)
 REFERENCES filter(creator_db, filter_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create a clustering index based on time
CREATE INDEX m_inspiral_ind_tim ON multi_inspiral(end_time) CLUSTER;

7.6.2. multi_burst Table Definition
CREATE TABLE multi_burst
(
-- Event table for multi-interferometer burst-event search.

-- Database which created this entry
 creator_db INTEGER NOT NULL WITH DEFAULT 1,

-- INFORMATION ABOUT THE PROCESS WHICH GENERATED THIS EVENT
-- Process which generated this event
 process_id CHAR(13) FOR BIT DATA NOT NULL,
-- Filter identifier (indicates type of filter, plus parameters). May be null
 filter_id CHAR(13) FOR BIT DATA,
-- Interferometers used for this search
 ifos CHAR(12) NOT NULL,

-- TIME OF THE EVENT
-- The start time of this burst event (in GPS seconds and nanoseconds)
 start_time INTEGER NOT NULL,
page 38 of 41

LIGO-T990101-02

e user
ided
 start_time_ns INTEGER NOT NULL,
-- The time duration of this burst event (seconds)
 duration REAL NOT NULL,

-- PROPERTIES OF THE EVENT
-- Center of frequency band in which observation is made (Hz)
 central_freq REAL,
-- Range of frequency observed (Hz)
 bandwidth REAL,
-- Absolute signal amplitude (fractional strain)
 amplitude REAL NOT NULL,
-- Signal to noise ratio
 snr REAL,
-- Confidence variable
 confidence REAL,

-- Direction of Hanford-to-Livingston ray at time of event
-- (i.e. the central axis of the cone on which the source lies)
 ligo_axis_ra REAL,
 ligo_axis_dec REAL,
-- Wave arrival angle with respect to Hanford-to-Livingston ray, and error
 ligo_angle REAL,
 ligo_angle_sig REAL,

-- Unique identifier for this event
 event_id CHAR(13) FOR BIT DATA NOT NULL,

 CONSTRAINT m_burst_pk
 PRIMARY KEY (creator_db, event_id),

 CONSTRAINT m_burst_fk_pid
 FOREIGN KEY (creator_db, process_id)
 REFERENCES process(creator_db, process_id),

-- Note that filter_id is allowed to be null, in which case no check is made.
 CONSTRAINT m_burst_fk_filt
 FOREIGN KEY (creator_db, filter_id)
 REFERENCES filter(creator_db, filter_id)
)
-- The following line is needed for this table to be replicated to other sites
DATA CAPTURE CHANGES
;
-- Create a clustering index based on time
CREATE INDEX m_burst_ind_time ON multi_burst(start_time) CLUSTER;

8 SAMPLE QUERIES
Common queries (with some options) will be predefined as part of the user interface, so th
will not normally have to know the SQL query language. The sample queries below are prov
as an “existence proof” that it is possible to retrieve useful information from the database.

• Get list of frameset groups:

SELECT DISTINCT frameset_group
FROM frameset_writer
ORDER BY frameset_group
page 39 of 41

LIGO-T990101-02

spec-

meta-
ugges-
e
eries

ar, it

scan
cess
nel list
ura-

cide
FOR READ ONLY;

• Get list of framesets within a given time interval:

SELECT frameset_group, start_time, end_time, name
FROM frameset
WHERE (start_time >= 627332233 AND end_time <= 627418633)
ORDER BY start_time, frameset_group
FOR READ ONLY;

Note that the example above only finds framesets which are wholly contained within the
ified time interval. To include framesets which overlap the specified time interval, use:

WHERE (end_time > 627332233 OR start_time < 627418633)

• Get list of framesets within a given time interval which include theH2:LSC-AS1_Q channel:

SELECT fs.frameset_group, fs.start_time, fs.end_time, fs.name
FROM frameset fs JOIN frameset_chanlist ch
 ON (fs.creator_db=ch.creator_db AND fs.chanlist_id=ch.chanlist_id)
WHERE (fs.start_time >= 627332233 AND fs.end_time <= 627418633)
 AND (ch.chanlist LIKE 'H2:LSC-AS1_Q ')
ORDER BY fs.start_time, fs.frameset_group
FOR READ ONLY;

• Get list of all summary-statistics periods for which the rms of theH0:PEM-LVEA_SEISX
channel is bigger than 20 counts:

SELECT start_time, end_time, mean, rms
FROM summ_statistics
WHERE (channel = 'H0:PEM-LVEA_SEISX' AND rms > 20.0)
ORDER BY start_time
FOR READ ONLY;

9 CONCLUSION
This document has presented a detailed design for the database tables underlying the LDAS
data / event database. This design will be implemented soon on a test basis. At this point, s
tions for changes particularly welcome, especially from people planning to be involved in th
astrophysics event searches. Experience with actual ingestion procedures and realistic qu
may point out areas needing modification or optimization.

Open issues include the following:

• The interface with the data acquisition system is not currently understood. In particul
is not clear who is responsible for filling theframeset_chanlist table. It would be
highly desirable for the DAQS to do this, since each frame-builder process obviously
already knows the channel list. A less attractive alternative is for an LDAS process to
the frame files written by the DAQS and extract the channel list; presumably this pro
would only have to scan a frame whenever the run number changes, since the chan
must be constant throughout a given run (?). Also, it is not clear how detector config
tion information (servo gains, etc.) is recorded in the database.

• The representation of a channel list as a CLOB limits one’s ability to figure out what
frameset group(s) should be retrieved to do a particular analysis, especially if we de
page 40 of 41

LIGO-T990101-02

ted
e-
or of
 to the
ng to
h

base

a web-
. In
ta to

ata-
e,

width
h it
lla-

.

ata-
on a data-archive model in which the data is split up by channel groups as it is inges
into the archive, which would allow quick retrieval of customized data streams. Ther
fore, we may find it necessary to represent the channel list differently (e.g. as a vect
sampling-rate codes for each of the few thousand possible channels) and add code
metadataAPI to support sophisticated queries. There are some complications, havi
do with enlarging the vector on-the-fly to accommodate new pseudo-channels, whic
would need to be worked out.

• The procedure by which a program assembles information and submits it to the data
needs to be worked out in detail, and software written to facilitate it.

• The user interface needs to be developed. Some ideas are currently circulating for
based graphical user interface. A command-line user interface might also be useful
particular, an analysis job might use a textual “data request descriptor” to specify da
be retrieved from the archive.

• The relationship among the multiple database installations needs to be defined. At
present, the idea is to copy information from the interferometer sites to the central d
base on a daily basis and to perform essentially all operations at the central databas
rather than setting up a truly distributed system, due to concerns about limited band
and network reliability. DB2 provides tools to automate this sort of operation, althoug
is not yet clear whether they will do exactly what we want. Additional database insta
tions can be supported as well, though administration issues need to be worked out

• The LSC needs to establish guidelines for what information is to be included in the d
base and a procedure for considering proposed changes.
page 41 of 41

	File /home/pshawhan/metadb/doc/T990101_TableDef_v02.fm — printed November 30, 1999
	Laser Interferometer Gravitational Wave Observatory
	- LIGO -
	Contents
	1 Introduction 3
	2 Scope of the LDAS Database 3
	3 Overview of Database Design 5
	4 Process Information 7
	4.1 process Table Definition 7
	4.2 process_params Table Definition 8

	5 Metadata About Raw Data 9
	5.1 Physical Data Units: Framesets 9
	5.1.1 frameset_chanlist Table Definition 10
	5.1.2 frameset_writer Table Definition 11
	5.1.3 frameset Table Definition 12
	5.1.4 frameset_loc Table Definition 13

	5.2 Logical Data Units: Segments 14
	5.2.1 segment_definer Table Definition 14
	5.2.2 segment Table Definition 15

	6 Summary Information 16
	6.1 summ_value Table Definition 16
	6.2 summ_statistics Table Definition 17
	6.3 summ_spectrum Table Definition 18
	6.4 summ_comment Table Definition 19

	7 GDS Triggers and Astrophysics Event CandidatEs 20
	7.1 Filter Information 21
	7.1.1 filter Table Definition 21
	7.1.2 filter_params Table Definition 22

	7.2 GDS Triggers 23
	7.2.1 gds_trigger Table Definition 23

	7.3 Single-Interferometer Astrophysics Event Candidates 24
	7.3.1 sngl_inspiral Table Definition 24
	7.3.2 sngl_burst Table Definition 26
	7.3.3 sngl_ringdown Table Definition 27
	7.3.4 sngl_unmodeled Table Definition 28
	7.3.5 sngl_unmodeled_v Table Definition 30
	7.3.6 sngl_dperiodic Table Definition 30

	7.4 Additional Information About Single-Interferometer Triggers/Events 32
	7.4.1 sngl_datasource Table Definition 32
	7.4.2 sngl_transdata Table Definition 33

	7.5 Coincidences of Single-Interferometer Events 34
	7.5.1 coinc_sngl Table Definition 34

	7.6 Multi-Interferometer Astrophysics Event Searches 37
	7.6.1 multi_inspiral Table Definition 37
	7.6.2 multi_burst Table Definition 38

	8 Sample Queries 39
	9 Conclusion 40

	1 Introduction
	2 Scope of the LDAS Database
	3 Overview of Database Design
	Figure 1: Graphical overview of database tables defined in this document.

	4 Process Information
	4.1. process Table Definition
	4.2. process_params Table Definition

	5 Metadata About Raw Data
	5.1. Physical Data Units: Framesets
	5.1.1. frameset_chanlist Table Definition
	5.1.2. frameset_writer Table Definition
	5.1.3. frameset Table Definition
	5.1.4. frameset_loc Table Definition

	5.2. Logical Data Units: Segments
	5.2.1. segment_definer Table Definition
	5.2.2. segment Table Definition

	6 Summary Information
	6.1. summ_value Table Definition
	6.2. summ_statistics Table Definition
	6.3. summ_spectrum Table Definition
	6.4. summ_comment Table Definition

	7 GDS Triggers and Astrophysics Event CandidatEs
	7.1. Filter Information
	7.1.1. filter Table Definition
	7.1.2. filter_params Table Definition

	7.2. GDS Triggers
	7.2.1. gds_trigger Table Definition

	7.3. Single-Interferometer Astrophysics Event Candidates
	7.3.1. sngl_inspiral Table Definition
	7.3.2. sngl_burst Table Definition
	7.3.3. sngl_ringdown Table Definition
	7.3.4. sngl_unmodeled Table Definition
	7.3.5. sngl_unmodeled_v Table Definition
	7.3.6. sngl_dperiodic Table Definition

	7.4. Additional Information About Single-Interferometer Triggers/Events
	7.4.1. sngl_datasource Table Definition
	7.4.2. sngl_transdata Table Definition

	7.5. Coincidences of Single-Interferometer Events
	7.5.1. coinc_sngl Table Definition

	7.6. Multi-Interferometer Astrophysics Event Searches
	7.6.1. multi_inspiral Table Definition
	7.6.2. multi_burst Table Definition

	8 Sample Queries
	9 Conclusion

