
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
-LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note LIGO-T000076- 00- D 08/7/2000

Losless compression of LIGO data.

S.Klimenko, G.Mitselmakher, A.Sazonov

This is an internal working note
of the LIGO Project.

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 18-34 LIGO Project - MS NW17-161

Pasadena CA 91125 Cambridge, MA 02139
Phone (626) 395-2129 Phone (617) 253-4824
Fax (626) 304-9834 Fax (617) 253-4824

E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu
WWW: http://www.ligo.caltech.edu/

file /tex/ionote/T000076.ps

Abstract

A method for lossless compression of LIGO data based on integer
wavelet transforms is described. It works in combination with fast and
simple data encoder optimized for compression of Gaussian random
signals. The results of data compression for the engineering run data
are presented for different compression algorithms.

Contents

1 Introduction 2

2 Random Data Encoder. 2

3 Integer wavelet transform. 3
3.1 Lifting Wavelet Transform . 4
3.2 Wavelet Transform Binary Tree . 6

4 Compression of LIGO data. 6

5 Conclusion 7

6 Acknowledgments 7

1

1 Introduction

LIGO is one of the most data-intensive projects. The expected total bit-rate is 15MB/s and
the full 2 year LIGO data stream will yield about 1 Petabyte of data. The design of the data
reduction procedures, that produce scientific data sets, is one of the important tasks of the
LIGO data analysis.

There are four levels of the data, ranging from the full interferometer data (Level 0) to
whitened GW strain data (Level 3, 1/1000 of the full data stream) [1]. The full data stream
will be available for about 16 hours after acquisition, but will not be archived. The data will be
processed to form the Archived Reduced Data Set (Level 1) that will be about 1/10 of the full
data stream. At this two stages of analysis it’s important to save all useful data with minimal
losses. Thus, fast and efficient lossless data compression can be essential for generation of the
Archived Reduced Data Set

In this paper we discuss lossless compression of the LIGO data with wavelets. The LIGO
data is mainly Gaussian noise with admixture of non-Gaussian signals. The idea of using
wavelets is to decompose data into components that can be fairly well described as a white
Gaussian noise. In other words, wavelets are used to decorelate the data, that means the
representation of data in wavelet domain is more compact then the original representation.
We present a method for lossless data compression based on the lifting wavelet transform that
maps integers to integers. The wavelet transform works in combination with the rdc (stands
for random data compression) encoder that is optimized for compression of random Gaussian
signals.

For this analysis the engineering run data (Hanford, April, 2000) was used. The results of
compression for different data channels are presented in comparison with other compression
techniques.

2 Random Data Encoder.

The output of LIGO data channels is digitized with 16 bit ADCs and sampled at the rate
between 1Hz - 16kHz. The typical data set is a time series where each sample is represented
with a 2 bytes word, so the total length of the data set with N samples is 2 ∗ N bytes.

First, we consider the compression of white Gaussian noise (WGN) signal with rms σn. The
average number of bits needed to encode such a signal is proportional to log2(σn). Figure 2
shows how many bits (k) is needed to encode data samples of the WGN signal with σn = 1000.
Since there is no correlation between the samples, we could estimate the minimal length of the
encoded signal, Lmin =

∑
i ki (assuming that we need 0 bits to encode zero). It is not achievable

in practice, because of the overhead due to service records that define structure of the encoded
data. However, different algorithms are possible, when the encoded data length L is quite close
to the Lmin. The simplest one is to divide the data on short and long samples, which are
encoded using words of kS and kL bits long respectively. The kL is just a maximum number of
bits needed to encode samples for a given data set. The kS can be found from minimizing of
the following equation:

2

bits
0 2 4 6 8 10 12 14 16

ev
en

ts

0

100

200

300

400

500

600

Figure 1: Number of bits required to encode white Gaussian noise signal with rms=10 (left
histogram) and rms=1000 (right histogram).

L(kS) = NS(kS) · kS + NL(kS) · (kL + ko), (1)

where, NS and NL is the number of short and long samples respectively (N = NS+NL), and ko

is the overhead constant. The contiguous sequence of short samples ended with a long sample
forms a data block, so the ko, actually, is the length of the block service word, that has the
information about the number of short and long samples in the block. Using this algorithm we
developed a simple data encoder (rdc), that produces data with the structure shown in Figure 2.
We tested the rdc encoder along with the standard one (gzip) on the WGN signals. The results
are shown in Figure 2. For the WGN signals the rdc encoder gives better compression factor
then gzip − 9 (best compression) encoder. Thought we didn’t investigate the time efficiency of
the rdc encoder accurately (currently we are running the rdc in the ROOT CINT interpreter),
it is at least 5 times faster then the gzip − 1 (fastest) encoder.

3 Integer wavelet transform.

For lossless compression an invertible wavelet transform that maps integers to integers is needed.
Another requirement is to find the wavelet representation of the data quickly. For this reasons
we use the biorthogonal lifting wavelet transform [3, 4]. It can map integers and it allows to
switch between the original data and its wavelet representation in a time proportional to the
size of the data. Below we describe the lifting wavelet transform that we have implemented for
the purpose of lossless compression of the LIGO data.

3

kbsw-1 bit 1 bitBlock Service Word:

number of short words number of long words

BSW (kbsw bit) ks bit ks bit kl bit…

short words long word

Block:
layer padded with zeroes

Layer header Block Block … Block 0

32 bit

total # of 32-bit
words in layer

of uncompressed
16–bit words in layer

shift & zero Layer service
word

32 bit 32 bit

Layer service word (32 bit)

compression opt ks ……...

8 bit 4 bit 4 bit 4 bit

kl kbsw

Figure 2: Structure of the encoded data.

3.1 Lifting Wavelet Transform

The basic idea behind lifting wavelets is that the transform can be done in three stages: split,
predict and update. At the first stage the data x(t) is split into two subsets (or layers) xo and
xe. We simply put odd samples in the xo layer and even samples in the xe layer. In the second
stage, based on the correlation present in the original data, the xe layer is used to predict the
xo layer. In practice it might not be possible to predict the odd layer exactly, however, the
prediction P (xe) is likely to be close to the xo. Subtracting the prediction from the xo we can
get the detail wavelet coefficients

d = xo − P (xe), (2)

that retain much less information if the prediction is reasonable. The update stage is used to
generate the approximation wavelet coefficients. It’s necessary to preserve the mean of the
data for the approximation layer that represents the coarse structure of the signal:

a = xe + U(d), ā = x̄. (3)

For example, for the Haar wavelet the predict and update stages are

P (xe) = xe, U(d) =
1

2
d. (4)

Figure 3.1(a) shows all three stages of the lifting wavelet transform. Since the initial data
set is integer, we can easily get the integer wavelet transform by modifying the predict and

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11

Log2(rms)

R
at

io
(c

o
m

p
re

ss
ed

/u
n

co
m

p
re

ss
ed

)

limit

gzip

rdc

Figure 3: Compression of white Gaussian noise with different rms. The gzip compression flag
is -9.

update operators:
PI = int(P), UI = int(U). (5)

The transform can be done in place (using the same space allocated for the data array x(t))
and it’s easily reversible (Figure 3.1(b)). Currently we use a family of symmetric, biorthog-
onal wavelet transforms. It’s predict and update operators can be build using the Lagrange
interpolation formula:

P =
∑

i

xei · hi, U =
1

2

∑

i

di · hi, hi =

∏
j (t − tj)∏
j (ti − tj)

, i = 1, 2, ...NP, i �= j. (6)

The coefficients hi for the first two wavelet transforms NP = 2, 4 are respectively (1/2, 1/2),
(−1/16, 9/16, 9/16,−1/16).

One lifting step produces the detail and approximation coefficients and then the next step
can be applied to the data in the approximation layer. Because of the specific select procedure,
each next lifting step yields a detail layer which is twice shorter in length then the previous
one. Thus the length of the initial data set x should be divisible by 2m, where m is the number
of steps.

5

PredictSplit
Input x(t)

Update

even

odd

approximation

detail

input to the
next stage

store as a result of
decomposition

MergePredict

evenapproximation

detail

Update

input from the
previous
stage

input of stored
elements

odd

decomposition (a)

reconstruction (b)

Figure 4: Lifting wavelet transform: a - decomposition, b - reconstruction

3.2 Wavelet Transform Binary Tree

The conventional wavelet transform described above can be illustrated graphically with the
wavelet decomposition tree (Fig. 3.2(a)). We can consider the detail coefficients as time series
and apply the wavelet transform to decompose the detail layers further. In this case the result
of decomposition will be a binary tree (Fig. 3.2(b)). If there is a complete decomposition of
depth m, the lower layer of the tree has 2m nodes, each N/2m samples long, where N is the
number of samples in the original data. Since each transformation step doubles the frequency
resolution, the nodes represent data in equidistant frequency bands, that is different compare to
the traditional transform where the wavelet layers have different frequency resolution (dyadic
basis).

4 Compression of LIGO data.

We used the engineering run data collected in April 2000 to test different compression methods.
We compared three encoders: gzip (the ompression flag is -9), eri [2] and the rdc encoder
described above. The encoders were applied to the original data in time domain (TD) and the
decorrelated data. To decorrelate data we used differentiation, wavelet transform (NP=6) and
wavelet binary tree transform (NP=6). The results of compression are shown in Figure 4. The
combinations wavelet + rdc shows better compression ratio then the other methods. Compare

6

d4

d3

d2

d1

d0

a

a. wavelet transform tree b. binary wavelet transform tree

d0

d1

d2

a

Figure 5: Wavelet transform trees.

to the traditional diffirentiation + gzip method, the average compression ratio for 16kHz
channels is better by ∼ 20% and for the 2kHz channels the improvement is ∼ 30%. Note, that
he combination of the rsd and gzip encoders (last column) doesn’t show any improvement in
the compression factor.

5 Conclusion

The lossless compression of LIGO data can be a useful tool for generation of the Archived
Data Set. The expected compression factor is around 2, that is essential for saving of the data
storage space. We suggest to use wavelet transforms and the rdc encoder to decorrelate and
compress the LIGO data. This method is fast, simple and offers better compression factor then
the other methods.

6 Acknowledgments

The authors would like to thank A.Studnik for help with the data processing. This work is
supported by the NSF grant PHY-9722114.

7

Compression ratios for 16kH data channels and different compression methods

Data type => Time domain data Time domain data with d Wavelet domein data WTree
Compression method => gzip ERI RDC gzip ERI RDC gzip ERI RDC RDC RDC+

Channel name gzip
H2:IOO-MC_F 1.48 2.30 1.55 1.88 2.06 2.33 1.87 1.98 2.40 2.35 2.36
H2:IOO-MC_I 1.41 1.68 1.75 1.38 1.63 1.65 1.39 1.61 1.75 1.78 1.78
H2:PSL-FSS_FAST_F 3.34 6.30 1.92 5.06 6.35 5.98 4.66 5.58 5.27 4.64 4.69
H2:PSL-FSS_MIXERM_F 1.22 1.35 1.34 1.24 1.35 1.40 1.24 1.35 1.42 1.44 1.44
H2:PSL-FSS_PCDRIVE_F 1.20 1.36 1.33 1.21 1.36 1.35 1.22 1.29 1.40 1.42 1.43
H2:PSL-ISS_ISERR_F 3.05 4.04 3.08 3.17 4.04 3.86 3.10 3.98 3.91 3.72 3.76
H2:LSC-AS_Q_TEMP 2.33 4.35 2.08 3.34 3.57 3.82 3.41 4.25 4.31 4.05 4.08
H2:LSC-AS_I_TEMP 1.13 1.24 1.22 1.16 1.26 1.27 1.17 1.29 1.30 1.43 1.44
H2:LSC-AS_DC_TEMP 3.64 6.01 2.46 4.96 6.23 6.00 4.61 5.68 5.48 4.81 4.86
Average ratio 1.72 2.19 1.71 1.89 2.13 2.18 1.88 2.11 2.23 2.24 2.25

Compression ratios for 2kH data channels and different compression methods

Data type => Time domain data Time domain data with d Wavelet domain data WTree
Compression method => gzip ERI RDC gzip ERI RDC gzip ERI RDC RDC RDC+

Channel name gzip
H0:PEM-BSC7_ACCX 1.60 1.90 2.00 1.47 1.70 1.83 1.52 1.71 2.05 2.12 2.14
H0:PEM-BSC5_ACCZ 1.84 2.34 2.28 1.71 1.97 2.20 1.77 1.88 2.41 2.46 2.48
H0:PEM-BSC7_ACCZ 1.73 2.21 2.21 1.66 1.87 2.18 1.71 1.86 2.27 2.27 2.29
H2:ASC-ETMX_P 1.12 1.17 1.21 1.08 1.09 1.13 1.11 1.12 1.22 1.23 1.10
H2:ASC-BS_P 1.17 1.27 1.30 1.12 1.17 1.22 1.15 1.20 1.31 1.29 1.30
H0:PEM-HAM7_ACCX 1.64 2.20 2.06 1.48 1.86 1.92 1.56 1.77 2.14 2.24 2.25
H0:PEM-BSC5_ACCY 1.72 2.15 2.20 1.54 1.74 1.98 1.61 1.77 2.17 2.27 2.28
H2:SUS-EMTX_SENSOR_UL 1.87 2.09 2.40 1.67 1.94 2.17 1.78 1.88 2.47 2.50 2.52
Average ratio 1.53 1.80 1.84 1.43 1.59 1.72 1.48 1.59 1.88 1.91 1.88

Figure 6: Compression ratio for different LIGO channels.

8

References

[1] LIGO-T990104-04-D, 1999 LSC Data Analysis White Paper.

[2] http://www.geocities.com/SiliconValley/

[3] Wim Sweldens, Peter Schrder. Wavelets in Computer Graphics, ACM SIGGRAPH Course
Notes, 1996. Building your own wavelets at home.

[4] R. C. Calderbank, Ingrid Daubechies, Wim Sweldens, and Boon-Lock Yeo Applied and
Computational Harmonic Analysis (ACHA), Vol. 5, Nr. 3, pp. 332-369, 1998. Wavelet
Transforms that Map Integers to Integers

9

