

"First Science Run at Livingston LIGO Observatory: Data calibration and stability"

Gabriela González Louisiana State University

S1 run: Aug 23-Sept 9

Lots of data...

http://www.phys.lsu.edu/faculty/gonzalez/S1LockStats/

Calibration? What calibration?

A "simple" DARN model

Rana Adhikari's Simulink model

Why does calibration matter?

Control room calibration

Why would calibration change?If
$$C(f) \rightarrow \alpha C(f)$$
, $AS_Q \rightarrow X_{ext} \frac{\alpha C(f)}{1 + \alpha H(f)}$. $G(f) \rightarrow \beta G(f)$ $AS_Q \rightarrow X_{ext} \frac{\alpha C(f)}{1 + \alpha \beta H(f)}$.

We can get information about a from changes in the amplitude of known displacements: we push the mirrors with sine waves, or "calibration lines".

How much did the calibration change?

Not really :

gain is not the only indicator of noise (or even a good one)

There's a lot of work to do!

- Understand the noise:
 - Dominant sources
 - Not-so-dominant sources
 - Model comparison
 - ...
- Find out a good tracking calibration method
- Keep the alignment controlled so that the calibration does not change!
- Find good criteria to evaluate performance in REAL TIME