

Upconversion Study with the Hilbert-Huang Transform

Jordan Camp Kenji Numata John Cannizzo Robert Schofield

Detchar Meeting Jan 5, 2007

ASA GODDARD SPACE FLIGHT CENTER

HHT – A new approach to time-series analysis

- Time-Frequency decomposition is key to identifying signals
 - Gravitational waves
 - Instrumental glitches
- Fourier and Wavelet analysis are "basis set" approaches
 - Express time-series as sum of fixed frequency waves
 - Works best when waves are actually present and stationary
 - If not, get time-frequency spreading: $\Delta t \Delta f \sim 1$
- HHT is adaptive approach
 - Does not impose any fixed form on decomposition
 - Allows very high t-f resolution
 - Not as good for persistent signal with very low SN

HHT: Empirical Mode Decomposition

- Data X(t) is *sifted* into symmetric components with zero mean: $X_i(t)$
 - •Sifting process is adaptive and does not assume a basis set
 - •Sifted components occupy different frequency ranges of the data
 - Their sum forms the data

Sifting identifies, fits to, and subtracts using the data extrema

- Application of Hilbert Transform to sifted data yields *instantaneous* frequency and power
 - Very different from Fourier frequency
 - X(t) must have monochromatic form (obtained from sifting)

$$Y_i(t) = \frac{1}{\pi} \int \frac{X_i(t')}{t - t'} dt'$$

$$\omega_i(t) = \frac{d}{dt} \left(\arctan\left[\frac{Y_i(t)}{X_i(t)}\right] \right) \qquad a(t) = \left[X(t)^2 + Y(t)^2 \right]^{1/2}$$

HHT of Glitch: IMF's

HHT of Glitch : Instantaneous Freq.

HHT of Glitch : Instantaneous Power

GODDARD SPACE FLIGHT CENTER

- Excess of detector noise observed between 40 and 200 Hz due to upconversion of seismic noise
- Robert Schofield has simulated this problem with a direct test mass injection at 1.7 Hz
- The Fourier spectrum shows noise excess from 40 to 100 Hz
- We have analyzed the DARM-ERR timeseries with the HHT to see if we could learn anything about the nature of the upconversion

HHT analysis of upconversion

ASA GODDARD SPACE FLIGHT CENTER

Next: What can be said of mechanism of upconversion?

- Robert Schofield has suggested that determine where the bursts are taking place relative to the stimulus
 - Maxima: saturation of electronics?
 - Zero-crossings: magnetization noise?
- Expect a definitive answer by next week