Analysis of nonstationarity in LIGO S5 data using the NoiseFloorMon output: proposal for a seismic Data Quality flag.

R. Stone for the LSC
Center for Gravitational Wave Astronomy
Department of Physics and Astronomy
University of Texas at Brownsville.

GWDAW, Boston, MA, Dec. 13-16, 2007
DCC #
Just a quick reminder

• Tracking AS_Q and all seismic channels.
• Frequency bands: 0-16, 16-32, 32-64, 64-128 Hz.
• Minute trends of max threshold crossing and cross correlations with the seismic channels stored.

• Offline analysis:
 - looking at trends on a daily basis
 - studying cross correlations with the seismic channels
 - Looks up other monitors for comparison.
Daily update is made (mostly automated/minimal supervision) and can be accessed at:

www.phys.utb.edu/~soma/MNFTresults/NoiseFloorMon_daily.html

Some analysis results/shift summaries can also be found at:

www.lsc-group.phys.uwm.edu/glitch/investigations/s5index.html

People who have been involved at various stages of this work
S. Mukherjee (algorithm and main code); Roberto Grosso (DMT code); R. Stone (present offline analysis).
Analysis and applications

- Analysis of data quality for important times, e.g. contribution to the burst detection checklist:

 http://www.phys.utb.edu/~soma/MNFTresults/ctNoiseFloorMon_Sep21_H1_updated.html

 gravity.phys.uwm.edu/cgi-bin/p cvs.cgi/*checkout*/bursts/projects/detection/burstdetectionchecklist-gps874465554.html

- Development of a seismic data quality flag:

 http://www.phys.utb.edu/~soma/MNFTresults/ctNoiseFloorMon_Sep12_H1_updated.html
Seismic data quality flag for S5

- Analysis of entire S5 data for H1, H2 and L1.
- Mark the GPS times of top 10 threshold crossings everyday.
- Insert in the DQ database with relevant frequency and channel information.

Daily Analysis
- Seismic correlations
- Daily trend in the GW channel
- Comparison with Q-scan
- Visualizing the data

Weekly trends in the GW channel

Monthly trends in The GW channel
Largest Threshold Crossings

09/12/2007

<table>
<thead>
<tr>
<th>#</th>
<th>Site</th>
<th>GPS time</th>
<th>Channels</th>
<th>Frequency Bands(Hz)</th>
<th>Q-Scans</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H0</td>
<td>873651360</td>
<td>PEM:EX_SEISX
PEM:MX_SEISX
PEM:MY_SEISX</td>
<td>32-64
64-128</td>
<td>Qscan</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H0</td>
<td>873653880</td>
<td>PEM:LVEA_SEISY</td>
<td>0-16</td>
<td>Qscan</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>H0</td>
<td>873667260</td>
<td>PEM:EX_SEISZ
PEM:LVEA_SEISY
PEM:MX_SEISZ
PEM:MY_SEISZ
LSC:AS_Q</td>
<td>64-128</td>
<td>Qscan</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>H0</td>
<td>873668220</td>
<td>PEM:EX_SEISX
PEM:LVEA_SEISY
LSC:AS_Q</td>
<td>0-16</td>
<td>Qscan</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>H0</td>
<td>873669000</td>
<td>PEM:MY_SEISZ
PEM:MY_SEISX</td>
<td>64-128
0-16</td>
<td>Qscan</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>H0</td>
<td>873671880</td>
<td>PEM:MX_SEISZ
PEM:MY_SEISZ</td>
<td>64-128</td>
<td>Qscan</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>H0</td>
<td>873689580</td>
<td>PEM:EX_SEISX</td>
<td>64-128</td>
<td>Qscan</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>H0</td>
<td>873713520</td>
<td>PEM:EX_SEISX</td>
<td>0-16</td>
<td>Qscan</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>H0</td>
<td>873714300</td>
<td>PEM:EX_SEISZ</td>
<td>32-64</td>
<td>Qscan</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>H0</td>
<td>873718320</td>
<td>PEM:BY_SEISZ</td>
<td>32-64</td>
<td>Qscan</td>
<td></td>
</tr>
</tbody>
</table>