Higgs Properties Measurement using H→ZZ*→4ℓ Decay Channel

Haijun Yang

The 23rd ATLAS Chinese Cluster Meeting IHEP, Beijing, 2013. 3. 3

Higgs Boson Production at LHC

Inelastic pp cross section at 7 TeV is ~ 60 mb

Higgs Boson Decay

Higgs decay branching

ratio at m_H=125 GeV

- ▶bb: 57.7% (huge QCD background)
- ➤ WW: 21.5% (easy identification in di-lepton mode, complex background)
- ττ: 6.3% (complex final states with τ leptonic and/or hadronic decays)
- ZZ*: 2.6% ("gold-plated", clean signature of 4-lepton, high S/B, excellent mass peak)
- γγ: 0.23% (excellent mass resolution, high sensitivity)

Higgs boson production rate: 1 out of 10¹² collision events

ATLAS Data Samples

7 TeV data samples (2011)

- -4.8 fb⁻¹ for physics analysis
- Peak luminosity 3.6×10^{33} cm⁻²s⁻

□ 8 TeV data samples (2012)

- Interview (2012)
 Int □ Data-taking efficiency: ~94%

□ Significant pileup events

Major Challenge

□ Large pileup events result in big challenge to the detector, reconstruction and particle identification !

Higgs $\rightarrow ZZ^* \rightarrow 4\ell$

The gold-plated channel over a wide range of potential Higgs mass.

Clean signature:

- 4 isolated leptons, full reconstruction;
- Mass peak over backgrounds, good mass resolution.

Small backgrounds:

Irreducible SM ZZ* production and reducible Z+jets, top, ...

But even smaller signal rate:

@125 GeV

$$BR(ZZ \to 4\ell) = 0.45\%, BR(H \to ZZ^*) = 2.6\%$$

$$\Rightarrow \sigma_H \times BR(H \to ZZ \to 4\ell) = 2.6 \text{ fb}$$

Selection efficiency to the 4th power of lepton efficiency: $0.7^4 \sim 0.25, 0.8^4 \sim 0.41 \Rightarrow$ critical to improve lepton selection!

Impact of the FSR Correction

(a) Impact of the FSR correction on the invariant mass of the Z (b) Comparison of the invariant mass spectra of boson candidates. $Z \rightarrow \mu\mu$ candidate events without and with reconstructed FSR photons after FSR correction.

Photon energy > 1 GeV

Estimation of ttbar, Zbb background

• The control region: four-lepton analysis selection except for isolation requirements on the sub-leading pair and at least one sub-leading leptons is required to fail the IP significance requirement, to suppress *ZZ*.

Estimation of ttbar, Zbb background

 Ttbar and Zbb background estimation using a fit on m₁₂ distribution (2nd order Chebychev polynomial for ttbar, Briet-Wigner line shape with Crystal-Ball resolution function for Zbb)

	tt	$Z + b\overline{b}$
4μ data fit	$0.141 \pm 0.028 \pm 0.028$	$2.028 \pm 0.489 \pm 0.509$
4μ MC	$0.091 \pm 0.012 \pm 0.018$	$1.030 \pm 0.158 \pm 0.258$
$2e2\mu$ data fit	$0.096 \pm 0.020 \pm 0.019$	$2.102 \pm 0.444 \pm 0.527$
$2e2\mu$ MC	$0.107 \pm 0.013 \pm 0.021$	$0.910 \pm 0.140 \pm 0.228$

Summary of Inclusive Backgrounds

		Method	Moriond 2013	
7 TeV, 4,6fk) ⁻¹	4μ		
,,		m_{12} fit: Z + jets contribution	$2.340 \pm 0.479 \pm 0.587^{++}$	
Method	Estimate	m_{12} fit: $t\bar{t}$ contribution	$0.141 \pm 0.028 \pm 0.028$ [†]	
	Listiniate	$t\bar{t}$ from $e\mu + \mu\mu$	$0.098 \pm 0.054 \pm 0.004$	
$\frac{1}{\mu}$	$0.226 \pm 0.074 \pm 0.025$ [†]	2 <i>e</i> 2µ	l	
m_{12} fit: $t\bar{t}$ contribution	$0.220 \pm 0.074 \pm 0.025$	m_{12} fit: Z + jets contribution	$2.484 \pm 0.494 \pm 0.623$ [†]	
m_{12} m. n contribution	0.028 ± 0.009 ± 0.012	m_{12} fit: $t\bar{t}$ contribution	$0.096 \pm 0.020 \pm 0.019$ [†]	
$\frac{2e2\mu}{m_{12}}$ fit: $7 \pm iets$ contribution	$0.186 \pm 0.061 \pm 0.021$ [†]	$t\bar{t}$ from $e\mu + \mu\mu$	$0.120 \pm 0.066 \pm 0.005$	
m_{12} III. Z + jets contribution $0.180 \pm 0.001 \pm 0.021$		2µ2e OS		
	$0.028 \pm 0.009 \pm 0.012$	$\ell\ell + ee$ OS in (p_T, η) bins	$5.2 \pm 0.4 \pm 0.5$ †	
$\frac{2\mu 2e}{\ell \ell + ac} OS in (n - n) hing}$	$\frac{18 \pm 0.2 \pm 0.4^{\dagger}}{1}$	fake factor	$3.8 \pm 0.6 \pm 0.6$	
$\frac{\ell\ell + \ell \ell}{\ell} OS III (p_T, \eta) OIIIS$	$\frac{1.0 \pm 0.3 \pm 0.4}{29}$	$2\mu 2e$ SS		
20 +	28404405	$\ell\ell + ee$ SS in (p_T, η) bins	$3.5 \pm 0.6 \pm 0.5$	
$3\ell + e$ average	$2.8 \pm 0.4 \pm 0.3$	fake factors	$2.9 \pm 0.3 \pm 0.6$	
4e 05		$3\ell + e$ average	$4.3 \pm 0.6 \pm 0.5$	
$\ell\ell + ee OS in (p_T, \eta) bins$	$1.4 \pm 0.3 \pm 0.4$	$3\ell + e$ in p_T bins	$3.4 \pm 0.7 \pm 0.3$	
4e SS		4e OS		
$3\ell + e$ average	$2.5 \pm 0.3 \pm 0.5$	$\ell\ell + ee$ OS in (p_T, η) bins	$3.2 \pm 0.5 \pm 0.5$ †	
		fake factors	$2.7 \pm 0.4 \pm 0.4$	
		$\ell\ell + ee$ SS in (p_T, η) bins	$2.4 \pm 0.4 \pm 0.5$	
8 TeV. 20.7	7fb ⁻¹	fake factors	$2.0 \pm 0.3 \pm 0.6$	
÷ :• ; = •		$3\ell + e$ average	$4.2 \pm 0.5 \pm 0.5$	
3/3/2013	H->ZZ->4l Search at	$3\ell + e$ in p_T bins	$3.5 \pm 0.7 \pm 0.3$	

Higgs Mass Resolution

Simulated Higgs Signal Shapes

(c) $H \rightarrow 2e2\mu$

(d) $H \rightarrow 2\mu 2e$

3/3/2013 Figure 30: Continuous parametrization in m_H . The signal shapes for 2012 ggF sampled in 1 GeV steps between 120 and 130 GeV.

$M_{4\ell}$ of Four Different Final States (4 μ , 2 μ 2e, 2e2 μ , 4e)

3/3/2013

H->ZZ->4l Search at ATLAS - H. Yang (SJTU)

$H \rightarrow ZZ^* \rightarrow 4I$ mass spectrum

mass and P_{T} requirements (21 + 141 = 162) H->ZZ->4l Search at ATLAS - H. Yang (SJTU)

3/3/2013

Single Z \rightarrow 4l Resonance

Expected quantity		7 TeV	8 TeV
Total cross-section of pp	$\rightarrow Z$	27.66×10^{6} fb	$32.24 \times 10^{6} \text{ fb}$
Phase space cross-section Branching ratio of $Z \rightarrow 44$	of $pp \to Z \to 4\ell(e,\mu)$ $\ell(e,\mu)$	$132.04 \pm 1.60 \text{ fb}$ $(4.36 \pm 0.22) \times 10^{-6}$	$153.83 \pm 1.85 \text{ fb}$ $(4.21 \pm 0.21) \times 10^{-6}$
Fiducial cross-section of """"""""""""""""""""""""""""""""""""	$Z \to 4\ell(e,\mu)$ $Z \to 4e$ $Z \to 2e2\mu$ $Z \to 2\mu 2e$	69.4 ± 0.7 fb 17.6 ± 0.2 fb 16.9 ± 0.2 fb 17.0 ± 0.2 fb	79.2 ± 0.8 fb 20.2 ± 0.2 fb 19.4 ± 0.2 fb 19.1 ± 0.2 fb
,,	$Z \rightarrow 4\mu$	18.0 ± 0.2 fb	20.4 ± 0.2 fb

Simple Gaussian Fit [84-96 GeV]

Cross Section of Z $\rightarrow 4\ell$

• ATLAS-COM-PHYS-2013-169

Final States	Theoretical cross section	Measured cross section
	σ (fb)	σ (fb)
	2011 Data -	$-7 \text{ TeV} (4.6 f b^{-1})$
4e	17.57 ± 0.18	$10.56 \pm 10.40(\text{stat}) \pm 2.15(\text{syst}) \pm 0.19(\text{lumi})$
$2e2\mu$	16.87 ± 0.17	$15.79 \pm 6.48(\text{stat}) \pm 1.13(\text{syst}) \pm 0.28(\text{lumi})$
$2\mu 2e$	17.00 ± 0.17	27.26 ± 12.45 (stat) ± 3.84 (syst) ± 0.49 (lumi)
4μ	17.99 ± 0.18	$12.57 \pm 4.38(\text{stat}) \pm 0.39(\text{syst}) \pm 0.23(\text{lumi})$
Combined	69.44 ± 0.70	$66.18 \pm 7.15(\text{stat}) \pm 7.15(\text{syst}) \pm 1.19(\text{lumi})$
	2012 Data -	8 TeV (20.7 fb^{-1})
4 <i>e</i>	20.25 ± 0.24	$17.56 \pm 4.87(\text{stat}) \pm 3.97(\text{syst}) \pm 0.49(\text{lumi})$
$2e2\mu$	19.40 ± 0.23	$20.73 \pm 3.09(\text{stat}) \pm 1.45(\text{syst}) \pm 0.58(\text{lumi})$
$2\mu 2e$	19.10 ± 0.23	$14.06 \pm 3.76(\text{stat}) \pm 2.05(\text{syst}) \pm 0.39(\text{lumi})$
4μ	20.42 ± 0.25	$20.81 \pm 2.51(\text{stat}) \pm 0.66(\text{syst}) \pm 0.58(\text{lumi})$
Combined	79.15 ± 0.95	$73.16 \pm 7.32(\text{stat}) \pm 7.52(\text{syst}) \pm 2.05(\text{lumi})$

$H \rightarrow ZZ^* \rightarrow 4\ell$ Events Selection

 The number of expected Higgs signal and background events for 4ℓ mass in a ±5 GeV mass window around 125 GeV, for 7 TeV and 8 TeV data.

	Signal	$ZZ^{(*)}$	$Z + jets, t\overline{t}$	Observed
4μ	$6.30 {\pm} 0.81$	$2.82{\pm}0.13$	0.49 ± 0.14	13
2µ2e	$3.00 {\pm} 0.43$	$1.37 {\pm} 0.11$	$0.77 {\pm} 0.12$	5
2e2µ	$3.91{\pm}0.51$	$2.05 {\pm} 0.10$	$0.53 {\pm} 0.14$	8
4 <i>e</i>	$2.49 {\pm} 0.36$	1.14 ± 0.11	$0.55 {\pm} 0.15$	6
Total	$15.71{\pm}2.11$	$7.38 {\pm} 0.45$	$2.35 {\pm} 0.27$	32

$H \rightarrow ZZ^* \rightarrow 4I$ Candidates

 M_{12} vs M_{34}

Significance of $H \rightarrow ZZ^* \rightarrow 4\ell$

Best Fitted Higgs Mass

20

$H \rightarrow ZZ^* \rightarrow 4I$ Signal Strength vs. Mass

Higgs $\rightarrow ZZ^* \rightarrow 4\ell$

□ Higgs has two types of couplings

□ Explore tension between SM value and observation from different Higgs production modes: μ_{VBF+VH} vs. $\mu_{ggF+ttH}$

Signal Strength for ggF and VBF Productions

□ 1D projections on the $\mu_{ggF+ttH}$ and μ_{VBF+VH} with m_H fixed as its best fitted mass.

 $\mu_{ggF+ttH} = 1.61 + 0.78(-0.51) \sigma/\sigma_{SM}$ $\mu_{VBF+VH} = 2.06 + 4.87(-1.88) \sigma/\sigma_{SM}$

H->ZZ->4l Search at ATLAS - H. Yang (SJTU)

$H \rightarrow ZZ^* \rightarrow 4l$: Spin and Parity

- □ Fully reconstructed final state allows measuring Spin/CP:
 - Five kinematic angles (production, decay)
 - Invariant mass of the primary Z and the secondary Z
- \Box Discriminate 0⁺ (SM) hypothesis against:
 - -0^{-} (CP odd), 1⁺, 1⁻
 - -2^{-} (pseudo-tensor)
 - -2^{+}_{m} (graviton-like tensor, minimal coupling)

Z'

 Φ_1

 Z_1

 θ_2

$H \rightarrow ZZ^* \rightarrow 4l$: Spin and Parity

□ Two multivariate discriminants used:

- Boosted Decision Trees (BDT)
- Matrix-Element calculation for each spin / CP (J^p-MELA)

→ Data strongly favour 0⁺ vs 0⁻:

 0^{-} hypothesis is excluded at 98.7% C.L., (2.2 σ , expected 2.17 σ)

- \rightarrow 0⁺ vs 1⁺ : observed separation 99.9% C.L. (3.05 σ , expected 2.31 σ)
- \rightarrow 0⁺ vs 1⁻ : observed separation 99.6% C.L. (2.66 σ , expected 3.86 σ)
- \rightarrow 0⁺ vs 2⁻ : observed separation 78.7% C.L. (0.8 σ , expected 2.09 σ)
- \rightarrow 0⁺ vs 2⁺ is excluded at 92.7% C.L. (1.45 σ , expected 1.09 σ)

H->ZZ->4l Search at ATLAS - H. Yang (SJTU)

Contributions to ATLAS Physics Analyses

 $H \rightarrow ZZ \rightarrow 4I$ Mass, Signal Strength, Spin, Parity etc.

- > ATLAS-COM-PHYS-2013-144
- > ATLAS-COM-PHYS-2013-145
- > ATLAS-COM-PHYS-2013-146

Z→4I Single Resonance Cross Section and BR➤ ATLAS-COM-PHYS-2013-169

Plan of SJTU Group

Muon New Small Wheel Detector Upgrade (collaborate with USTC, SDU and UM)

- Development of sTGC segment finding algorithm including simulation, look-up table preparation and performance studies
- Participation in NSW test beam experiments to study new detector performance and signal characteristics

Liang Li is visiting CERN from March 2 – May 25 for EE chambers installation and NSW simulation work.

Updated results and measurements of properties of the new Higgs-like particle in the four lepton decay channel with the ATLAS detector. Spin and CP measurement.

February 17, 2013

C. Anastopoulos¹, M. Antonelli³⁴, Ludovica Aperio Bella¹⁸, O. Baker³⁵, E. Benhar Noccioli¹², S. Borroni²⁵, K. Brendlinger²⁴, P. Catastini⁴¹, L. R. Flores Castillo³, T. Cao⁸, F. Cerutti¹⁴, A Calandri⁷, D. Charfeddine⁹, L. Chevalier⁷, F. Conventi³¹, P.J. Clark¹⁶, K. Cranmer¹⁵, G. Cree¹⁰, T. Cuhadar Donszelmann⁴, T. Dai¹⁷, J. Dandoy⁴⁰, A. Daniells¹⁸. A. Di-Mattia²², F. DiValentino¹⁰, C. Dionisi^{1,13}, K. Ecker⁶, D. Fassouliotis⁵, E. Feng²⁶, M. Franklin⁴¹, A. Gabrielli¹³, F. Garay¹⁶, S. Giagu^{1,13}, J. Guimaraes da Costa⁴¹, E. Gkougkousis⁹, D. Grinszpun²², E. Gozani²², M. Goblirsch-Kolb⁶, T. Guillemin⁹, R.D. Harrington¹⁶, S. Hassani⁷, S. Heim²⁴, S. Hou³⁷, L. Iconomidou-Fayard⁹, K. Iordanidou^{5,27}, V. Ippolito^{1,13}, L. Jeanty⁴¹, X. Ju³, T. Koffas¹⁰, R. Konoplich¹⁵, O. Kortner⁶, C. Kourkoumelis⁵, A. Krasznahorkay¹⁵, S. Kreiss¹⁵, J. Kroll²⁴, T. Lagouri³⁵, C. Leonidopoulos¹⁶, D. Levin¹⁷, L. Liu¹⁷, X. Li¹⁷, B. Li^{36,37}, B. Lopez-Paredes⁴, L. Lu¹⁷, B. Mansoulie⁷, C. Maiani⁷, E. Meoni²³, E. Monnier¹¹, A. Morley¹, G. Carrillo Montoya³² E. Mountricha²⁷, R. D. Mudd¹⁸, R. Di Nardo³⁴, R. Nicolaidou⁷, K. Nikolopoulos¹⁸, S. Oda¹⁹, G. Pásztor¹², E. Paganis⁴, L. E. Pedersen²⁸, L. Pontecorvo¹³, K. Prokofiev¹⁵, J. Pilcher⁴⁰, D. Rebuzzi^{29,30}, M. Rescigno^{2,13}, S. Rosati¹³, E. Rossi^{1,13}, Y. Rozen²², A. Salvucci³⁹, A. Schaffer⁹, S. Sekula⁸, K. Selbach¹⁶, F. Sforza⁶, R. Stroynowski⁸, G. Sciolla²¹, W. Spearman⁴¹, J. Stahlman²⁴, S. Sun²⁴, F. Tarrade¹⁰, E. Tiouchichine¹¹, J. Tojo¹⁹, T. Vickey³², G. Volpi³⁴, K. Whalen¹⁰, A. Wilson¹⁷, H. Williams²⁴, S. L. Wu³, Y. Wu¹⁷, J. Webster⁴⁰, B. Wynne¹⁶, M. Xiao⁷, L. Xu¹⁷, H. Yang³⁸, S. Zambito²¹, B. Zhou¹⁷, Z. Zhao³⁶

¹CERN, Geneva ²Università La Sapienza, Roma ³University of Wisconsin, Madison ⁴University of Sheffield, Sheffield ⁵University of Athens, Athens ⁶Max-Planck Institute for Physics, Munich ⁷DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette ⁸Southern Methodist University, Dallas ⁹Laboratoire de l'Accelérateur Linéaire, Orsay 10Carleton University, Ottawa

¹¹Centre de Physique des Particules de Marseille, Marseille ¹²Université de Genève, Geneva ¹³INFN Sezione di Roma I, Roma ¹⁴LBNL ¹⁵New York University, New York ¹⁶University of Edinburgh, Edinburgh ¹⁷University of Michigan, Ann Arbor ¹⁸University of Birmingham, Birmingham ¹⁹Kyushu University, Fukuoka ²⁰Iowa State University ²¹Brandeis University ²²Technion University ²³Tufts University ²⁴University of Pennsylvania ²⁵Deutsches Elektronen-Synchrotron, Hamburg ²⁶Argonne National Laboratory ²⁷Brookhaven National Laboratory, Upton ²⁸Niels Bohr Institute, University of Copenhagen, Copenhagen ²⁹INFN Sezione di Pavia, Pavia ³⁰Università di Pavia, Pavia ³¹Università di Napoli Parthenope and INFN sezione di Napoli, Napoli ³²University of the Witwatersrand ³³National Technical University Athens, Athens ³⁴INFN LNF, Laboratori Nazionali di Frascati ³⁵Yale University, Yale ³⁶University of Science and Technology, Hefei ³⁷Academia Sinica, Taipei ³⁸Shanghai Jiao Tong University, Shanghai ³⁹Radboud University Nijmegen and Nikhef, Nijmegen ⁴⁰University of Chicago ⁴¹Harvard University

H->ZZ->4l Search at ATLAS - H. Yang (SJTU)

ATLAS NOTE February 17, 2013

Updated results and measurements of properties of the new Higgs-like

particle in the four lepton decay channel with the ATLAS detector. Mass

and signal strength measurement.

C. Anastopoulos¹, M. Antonelli³⁴, Ludovica Aperio Bella¹⁸, O. Baker³⁵, E. Benhar

Noccioli¹², S. Borroni²⁵, K. Brendlinger²⁴, A Calandri⁷, T. Cao⁸, G. Carrillo Montoya³²,

P. Catastini⁴¹, L. R. Flores Castillo³, F. Cerutti¹⁴, D. Charfeddine⁹, L. Chevalier⁷,

F. Conventi³¹, P.J. Clark¹⁶, K. Cranmer¹⁵, G. Cree¹⁰, T. Cuhadar Donszelmann⁴, T. Dai¹⁷, J. Dandoy⁴⁰, A. Daniells¹⁸, A. Di-Mattia²², D. Di Valentino¹⁰, C. Dionisi^{1,13}, K. Ecker⁶.

D. Fassouliotis⁵, E. Feng²⁶, M. Franklin⁴¹, A. Gabrielli¹³, F. Garay¹⁶, S. Giagu^{1,13}, J. Guimaraes da Costa⁴¹, E. Gkougkousis⁹, D. Grinszpun²², E. Gozani²², M. Goblirsch-Kolb⁶.

T. Guillemin⁹, R.D. Harrington¹⁶, S. Hassani⁷, S. Heim²⁴, S. Hou³⁷, L. Iconomidou-Favard⁹.

K. Iordanidou^{5,27}, V. Ippolito^{1,13}, L. Jeanty⁴¹, X. Ju³, T. Koffas¹⁰, R. Konoplich¹⁵,

O. Kortner⁶, C. Kourkoumelis⁵, A. Krasznahorkay¹⁵, S. Kreiss¹⁵, J. Kroll²⁴, T. Lagouri³⁵,

C. Leonidopoulos¹⁶, D. Levin¹⁷, L. Liu¹⁷, X. Li¹⁷, B. Li^{36,37}, B. Lopez-Paredes⁴, L. Lu¹⁷, B. Mansoulie⁷, C. Maiani⁷, E. Meoni²³, E. Monnier¹¹, A. Morley¹, E. Mountricha²⁷.

R. D. Mudd¹⁸, R. Di Nardo³⁴, R. Nicolaidou⁷, K. Nikolopoulos¹⁸, S. Oda¹⁹, G. Pásztor¹²

E. Paganis⁴, L. E. Pedersen²⁸, L. Pontecorvo¹³, K. Prokofiev¹⁵, J. Pilcher⁴⁰, D. Rebuzzi^{29,30}

M. Rescigno^{2,13}, S. Rosati¹³, E. Rossi^{1,13}, Y. Rozen²², A. Salvucci³⁹, A. Schaffer⁹, S. Sekula⁸,

K. Selbach¹⁶, F. Sforza⁶, R. Stroynowski⁸, G. Sciolla²¹, W. Spearman⁴¹, J. Stahlman²⁴,

S. Sun²⁴, F. Tarrade¹⁰, E. Tiouchichine¹¹, J. Tojo¹⁹, T. Vickey³², G. Volpi³⁴, K. Whalen¹⁰, A. Wilson¹⁷, H. Williams²⁴, S. L. Wu³, Y. Wu¹⁷, J. Webster⁴⁰, B. Wynne¹⁶, M. Xiao⁷,

L. Xu¹⁷, H. Yang³⁸, S. Zambito²¹, B. Zhou¹⁷, Z. Zhao³⁶

Draft version 0.61

ATLAS NOTE February 22, 2013

Draft version 0.5

Four lepton decay channel with production mechanism specific signatures: study of the Higgs-like particle at 125 GeV and searches for additional resonances.

C. Anastopoulos¹, M. Antonelli³⁴, L. Aperio Bella¹⁸, O. Baker³⁵, E. Benhar Noccioli¹², F. Bernlochner⁴², S. Borroni²⁵, K. Brendlinger²⁴, A Calandri⁷, T. Cao⁸, G. Carrillo Montoya³², P. Catastini⁴¹, L. R. Flores Castillo³, F. Cerutti¹⁴, D. Charfeddine⁹, L. Chevalier⁷, F. Conventi³¹, P.J. Clark¹⁶, K. Cranmer¹⁵, G. Cree¹⁰, T. Cuhadar Donszelmann⁴, T. Dai¹⁷, J. Dandoy⁴⁰, A. Daniells¹⁸, A. Di-Mattia²², D. Di Valentino¹⁰, C. Dionisi^{1,13}, K. Ecker⁶, D. Fassouliotis⁵, E. Feng²⁶, M. Franklin⁴¹, A. Gabrielli¹³, F. Garay¹⁶, S. Giagu^{1,13}, D. Gilberg¹, J. Guimaraes da Costa⁴¹, E. Gkougkousis⁹, D. Grinszpun²², E. Gozani²², M. Goblirsch-Kolb⁶, T. Guillemin⁹, R.D. Harrington¹⁶, S. Hassani⁷, S. Heim²⁴, S. Hou³⁷ L. Iconomidou-Fayard⁹, K. Iordanidou^{5,27}, V. Ippolito^{1,13}, L. Jeanty⁴¹, X. Ju³, T. Koffas¹⁰ R. Konoplich¹⁵, O. Kortner⁶, C. Kourkoumelis⁵, A. Krasznahorkay¹⁵, S. Kreiss¹⁵, J. Kroll²⁴, T. Lagouri³⁵, C. Leonidopoulos¹⁶, D. Levin¹⁷, L. Liu¹⁷, X. Li¹⁷, B. Li^{36,37}, B. Lopez-Paredes⁴, L. Lu¹⁷, B. Mansoulie⁷, C. Maiani⁷, E. Meoni²³, E. Monnier¹¹, A. Morley¹, E. Mountricha²⁷, R. D. Mudd¹⁸, R. Di Nardo³⁴, R. Nicolaidou⁷, K. Nikolopoulos¹⁸, S. Oda¹⁹, G. Pásztor¹², E. Paganis⁴, L. E. Pedersen²⁸, L. Pontecorvo¹³, K. Prokofiev¹⁵, J. Pilcher⁴⁰, D. Rebuzzi^{29,30}, M. Rescigno^{2,13}, S. Rosati¹³, E. Rossi^{1,13}, Y. Rozen²², A. Salvucci³⁹, A. Schaffer⁹, S. Sekula⁸, K. Selbach¹⁶, F. Sforza⁶. R. Stroynowski⁸, G. Sciolla²¹, W. Spearman⁴¹, J. Stahlman²⁴, S. Sun⁴¹, R. Tanaka⁹, F. Tarrade¹⁰, E. Tiouchichine¹¹, J. Tojo¹⁹, T. Vickey³², G. Volpi³⁴, K. Whalen¹⁰, A. Wilson¹⁷, H. Williams²⁴, S. L. Wu³, Y. Wu¹⁷, J. Webster⁴⁰, B. Wynne¹⁶, M. Xiao⁷, L. Xu¹⁷, H. Yang³⁸, S. Zambito²¹, G. Zevi Della Porta⁴¹, B. Zhou¹⁷, Z. Zhao³⁶

¹CERN, Geneva ²Università La Sapienza, Roma ³University of Wisconsin, Madison ⁴University of Sheffield, Sheffield ⁵University of Athens, Athens ⁶Max-Planck Institute for Physics, Munich ⁷DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette ⁸Southern Methodist University, Dallas

¹CERN, Geneva ²Università La Sapienza, Roma ³University of Wisconsin, Madison ⁴University of Sheffield, Sheffield ⁵University of Athens, Athens ⁶Max-Planck Institute for Physics, Munich ⁷DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette

H->ZZ->4l Search at ATLAS - H. Yang (SJTU)

Draft version 0.1

February 14, 2013

Cross-section measurements of Single Resonance $Z \rightarrow 4\ell$ in pp collisions at 7 TeV and 8 TeV with the ATLAS Detector

J.R. Batley¹, M. Baumer¹, T. Dai², A. Daniells³, H. Feng², S. French¹, S. Hou⁴, D. Levin²,
B. Li^{5,4}, X. Li², J. Liu², N. Lu², E. Mountricha⁶, R. Mudd³, K. Nikolopoulos³, F. Tarrade⁷,
A. Wilson^{2,4}, Y. Wu^{2,5}, L. Xu^{2,5}, H. Yang⁸, Z. Zhao⁵, B. Zhou²

¹Cavendish Laboratory, University of Cambridge, Cambridge
 ²Department of Physics, The University of Michigan, Ann Arbor MI
 ³School of Physics and Astronomy, University of Birmingham, Birmingham
 ⁴Institute of Physics, Academia Sinica, Taipei
 ⁵Department of Modern Physics, University of Science and Technology of China, Anhui
 ⁶Physics Department, National Technical University of Athens, Zografou
 ⁷Department of Physics, Carleton University, Ottawa ON
 ⁸Physics Department, Shanghai Jiao Tong University, Shanghai

上海交通大学ATLAS实验组招聘

- 招聘1-2名特别研究员
- 招聘2名博士后或助理研究员,从事探测器 升级和物理分析
- 招聘1名计算机管理人员
- 招收多名研究生和本科生

Backup

Plan of SJTU Group

Physics Analyses:

- Search for Higgs via $H \rightarrow ZZ^* \rightarrow 4I$ final states
- Determination of Higgs spin and CP using H→ZZ*→4l events
- Cross section measurement of single resonant $Z \rightarrow 4I$
- Cross section measurement and aTGC (WW, WZ, ZZ)
- Search for new physics using diboson final states
- Precise measurements of Single top quark production
- New physics search related to top quark production and properties

Fit of 4ℓ Mass Distribution

• Fit using a Breit-Wigner line shape convoluted with a Gaussian distribution

BW(x, M_Z, Γ_Z) * Gauss($x, m_{4\ell}, \sigma_{4\ell}$)

Selected H \rightarrow ZZ* \rightarrow 4l Events

		μμ	μμμμ		eeμμ		eeee	
		Low mass	High mass	Low mass	High mass	Low mass	High mass	
	Luminosity	20.7	fb^{-1}	20.	$7 { m fb}^{-1}$	20.7	fb^{-1}	
	$ZZ^{(*)}$	28.52±1.27	91.53±6.65	24.56±1.50	$141.83{\pm}10.82$	11.47±1.13	55.21±4.43	
	$Z, Zb\overline{b}, \text{ and } t\overline{t}$	$1.88 {\pm} 0.62$	$0.56 {\pm} 0.18$	5.00 ± 1.17	1.43 ± 0.34	$2.11{\pm}0.70$	$0.59 {\pm} 0.20$	
]	Fotal Background	$30.40{\pm}1.42$	$92.09 {\pm} 6.65$	$29.56{\pm}1.90$	$143.26{\pm}10.82$	$13.59 {\pm} 1.33$	55.79 ± 4.43	
	Data	40.00	93.00	40.00	169.00	20.00	55.00	
	$m_H = 123 \text{ GeV}$	4.44	-0.60	5.44	± 0.78	2.26	±0.35	
	$m_H = 125 \text{ GeV}$	5.88±	=0.75	6.99	± 0.94	2.82=	± 0.41	
	$m_H = 127 \text{ GeV}$	6.71	=0.90	8.46	± 1.20	3.40=	±0.52	
	$m_H = 130 \text{ GeV}$	8.74	$8.74{\pm}1.11$		11.48 ± 1.55		$4.54{\pm}0.66$	
	$m_H = 400 \text{ GeV}$	13.08:	±1.66	22.9	22.90 ± 3.10		9.61 ± 1.42	
	$m_H = 600 \text{ GeV}$	2.68	=0.33	4.83	4.83 ± 0.63		2.04 ± 0.29	
-		ļ	ιμμμ		ееµµ	e	eee	
		Low mass	s High mas	s Low mas	s High mass	Low mass	High mass	
	Luminosity	4	.6 fb ⁻¹	4	4.6 fb^{-1}		$4.6 { m ~fb^{-1}}$	
	$ZZ^{(*)}$	5.30±0.24	4 16.64±1.2	20 4.22±0.2	6 26.27±1.99	$1.54{\pm}0.15$	9.24±0.74	
	$Z, Zb\overline{b}, \text{ and } t\overline{t}$	0.41 ± 0.14	4 0.13±0.04	4 1.11±0.2	$6 0.32 \pm 0.08$	$0.47 {\pm} 0.16$	$0.13 {\pm} 0.04$	
	Total Backgroun	d 5.72 ± 0.27	7 16.77±1.2	20 5.33±0.3	6 26.59±1.99	$2.01{\pm}0.22$	$9.37 {\pm} 0.74$	
-	Data	11.00	23.00	7.00	23.00	3.00	13.00	
-	$m_H = 125 \text{ GeV}$	1.0	06 ± 0.14	1.	13 ± 0.15	0.39	± 0.06	
	$m_H = 400 \text{ GeV}$	2.1	1 ± 0.28	3.	3.61 ± 0.50		$1.44{\pm}0.21$	
2/20	$m_H = 600 \text{ GeV}$	0.4	10 ± 0.05	0.	71 ± 0.10	0.31	± 0.05	
J/ZU-								

Is it the SM Higgs ?

Varify the new observed particle					1
✓ Spin-0 particle	Spin of particle	YY	ZZ*	π	bb
• Spin-1: excluded by $H \rightarrow \gamma \gamma$	Spin 0	\odot	\odot	\odot	\odot
 Spin-2: look at angular correlation 	Spin 1	8	\odot	\odot	\odot
	Spin 2	\odot	\odot	8	\odot
✓ CP-nature	Seen?	Yes	Yes	Not yet	Not yet

- SM Higgs CP-even, extended Higgs sectors has CP-odd or mixed states
- Look at angular correlations
- ✓ Couplings
 - Gauge / Yukawa couplings $\rightarrow g_{vvH}, g_{ffH} \propto m$
 - Unitarity in $W_L W_L$ scattering $\rightarrow g_{WWH} \propto m_W$
 - Higgs self-couplings, determine shape of Higgs potential via trilinear and quartic couplings, V = $\mu^2 |\Phi|^2 + \lambda |\Phi|^4$ + constant

Higgs Production Cross Section and BR

m_H	$\sigma(gg \rightarrow H)$	$\sigma(qq' \rightarrow Hqq')$	$\sigma(q\bar{q} \rightarrow WH)$	$\sigma(q\bar{q} \rightarrow ZH)$	$\operatorname{BR}\left(H \to ZZ^{(*)} \to 4\ell\right)$
[GeV]	[pb]	[pb]	[pb]	[pb]	[10 ⁻³]
			$\sqrt{s} = 7$ TeV		
123	$15.8^{+2.3}_{-2.4}$	1.25 ± 0.03	$0.60^{+0.02}_{-0.03}$	0.33 ± 0.02	0.103
125	15.3 ± 2.3	1.22 ± 0.03	0.57 ± 0.02	0.32 ± 0.02	0.125
127	14.9 ± 2.2	1.20 ± 0.03	0.54 ± 0.02	0.30 ± 0.02	0.148
400	$2.05^{+0.30}_{-0.29}$	0.18 ± 0.01	_	_	1.21
600	$0.34^{+0.06}_{-0.05}$	$0.062^{+0.005}_{-0.002}$	_	_	1.23
			$\sqrt{s} = 8$ TeV		
123	20.2 ± 3.0	1.61 ± 0.05	0.73 ± 0.03	0.42 ± 0.02	0.103
125	19.5 ± 2.9	$1.58^{+0.04}_{-0.05}$	0.70 ± 0.03	0.39 ± 0.02	0.125
127	18.9 ± 2.8	1.55 ± 0.05	$0.66^{+0.02}_{-0.03}$	0.37 ± 0.02	0.148
400	$2.92^{+0.41}_{-0.40}$	0.25 ± 0.01	_	—	1.21
600	$0.52\substack{+0.08\\-0.07}$	0.097 ± 0.004	—	_	1.23

Higgs Spin and Parity Measurement

▼z'

Ζ

Variables sensitive to spin and parity

- Mass related variables: m_{ZZ} , m_{Z1}/m_{ZZ} , m_{Z2}/m_{ZZ}
- Kinematics variables
 - Pt_H, η_H , ϕ_{H_2} , lepton pT of second Z (pTl3, pTl4) - $\Delta R(l_3, l_4)$, $\Delta \eta(l_3, l_4)$, $\Delta R(Z_1, Z_2)$
- Angular variables
 - $-\cos\theta_1, \cos\theta_2, \cos\theta^*, \phi_1, \phi_2, \phi_{12}$
 - θ_1 and θ_2 are the angles between negative final state leptons and the direction of flight of their respective Z-bosons. The 4-vectors of leptons are calculated in the rest frame of the corresponding Z-bosons.

 θ_{2}

Φ

- ϕ is the angle between the decay planes of four final state leptons expressed in the four leptons rest frame.
- ϕ_1 is the angle defined between the decay plane of the first lepton pair and a plane defined by the vector of the Z_1 in the four lepton rest frame and the positive direction of the collision axis.
- θ^* is the production angle of the Z_1 defined in the four lepton rest frame.

Multivariate Method: BDT

Expected and Observed Exclusions

Tested	Assumed					
	0+	0-	1+	1-	2_{m}^{+}	2-
0^{+}		0.015 (2.17)	0.021 (2.02)	0.708 (-0.55)	0.138 (1.09)	0.021 (2.04)
0-	0.015 (2.17)		0.004 (2.68)	0	0.014 (2.20)	0.038 (1.78)
1+	0.010 (2.31)	0.001 (3.16)		0.060 (1.55)	0.007 (2.46)	0.001 (3.02)
1-	0.000 (3.86)	0	0.051 (1.63)		0.005 (2.60)	0.009 (2.35)
2_{m}^{+}	0.137 (1.09)	0.019 (2.08)	0.018 (2.10)	0.009 (2.37)		0.009 (2.35)
2-	0.018 (2.09)	0.036 (1.80)	0.004 (2.62)	0.017 (2.11)	0.007 (2.46)	

Table 19: The expected exclusion fof different spin and parity hypotheses with respect to each other for the multivariate analysis. The exclusion is given in terms of p-value with the corresponds number of Gaussian in parentheses. Result with the nominal binning in $m_{4\ell}$. Presented values are for 7 TeV and 8 TeV combined.

Tested	Assumed					
	0+	0-	1+	1-	2_{m}^{+}	2-
0^{+}		0.304 (0.51)	0.508 (-0.02)	0.465 (0.09)	0.536 (-0.09)	0.038 (1.77)
0-	0.013 (2.22)		0.070 (1.47)	0	0.184 (0.90)	0.201 (0.84)
1+	0.001 (3.05)	0.016 (2.14)		0.000 (3.69)	0.000 (3.38)	0.000 (3.41)
1-	0.004 (2.66)	0	0.944 (-1.59)		0.085 (1.37)	0.014 (2.19)
2_{m}^{+}	0.073 (1.45)	0.038 (1.77)	0.571 (-0.18)	0.046 (1.68)		0.007 (2.44)
2-	0.213 (0.80)	0.078 (1.42)	0.368 (0.34)	0.258 (0.65)	0.281 (0.58)	

Table 44: The observed exclusion for 7 and 8 TeV combined of different spin and parity hypotheses with respect to each other for the multivariate analysis. The exclusion is given in terms of p-value with the corresponds number of Gaussian in parentheses. Result with the nominal binning in $m_{4\ell}$. Presented values are for the 7 TeV and 8 TeV combined. 3/3/2013 H->ZZ->4I Search at ATLAS - H. Yang (SJTU)

Contributions to ATLAS Physics Analyses

Search for Higgs through $H \rightarrow ZZ \rightarrow 4I$ final state

- ➤ 4.7 fb⁻¹(7TeV), ATL-COM-PHYS-2012-530
- > 3.2 fb⁻¹(8TeV), ATL-COM-PHYS-2012-721
- > 5.8 fb⁻¹(8TeV), ATL-COM-PHYS-2012-835
- Control Con

Current works on Higgs spin and CP measurement

- Higgs Spin/Parity Determination based on BDT, <u>ATLAS HSG2 MVA Meeting</u>, August 6, 2012
- JHU MC Validation and Higgs Spin/Parity Determination based on BDT, <u>ATLAS</u> <u>HSG2 MVA Meeting</u>, July 30, 2012

Modeling Spin and Parity States

 CP-even and CP-odd resonances with spins 0, 1, and 2 are considered.

Table 1: Choice of coupling parameters for the spin-0, spin-1, spin-2 models considered in the current analysis. For the $q\bar{q}$ channel the unique choice of coupling parameters was made across all the spin and parity states: $g_1 = 1$.

J^P	Production	Decay	Comments
	configuration	configuration	
0^{+}	$gg \rightarrow X$:	$g_1 = 1 \ g_2 = g_3 = g_4 = 0$	
0-	$gg \rightarrow X$:	$g_4 = 1 \ g_1 = g_2 = g_3 = 0$	
1+	$q \bar{q} ightarrow X$:	$g_1 = 0 g_2 = 1$	
1-	$q\bar{q} \rightarrow X$:	$g_1 = 1 g_2 = 0$	
2_{m}^{+}	$gg \rightarrow X: g_1 = 1$	$g_1 = g_5 = 1$	Graviton-like tensor with minimal couplings
2_{m}^{+}	$q\bar{q} \rightarrow X: g_1 = 1$	$g_1 = g_5 = 1$	Graviton-like tensor with minimal couplings
2-	$gg \rightarrow X : g_1 = 1$	$g_8 = g_9 = 1$	"Pseudo-tensor"

BDT Training and Test Results

□ About 28K JHU H(0+) and 28K H(0-) events, one half for BDT training and another half and SM ZZ for test.

Selection Cuts:

- 50 GeV < MZ1 < 106 GeV
- 17.5 GeV < MZ2 < 115 GeV
- Lepton pT:

pT1 > 20 GeV, pT2 > 15 GeV, pT3 > 10 GeV, pT4 > 7 GeV

- |Eta| < 2.5
- dR > 0.1 (0.2) for same (different) flavor di-lepton
- 120 GeV < M_{zz} < 130 GeV

Log-likelihood Ratio and Separation Power

- Using Binned Log-likelihood Ratio method to determine the separation power between Higgs 0+ and 0-Pseudo Data (10 fb⁻¹) 0.12 □ 1M MC trials based on Poisson statistics 0.1 $Higgs(0^+)$ Higgs(0) Probability 0.08 Log-likelihood Ratio distributions 0.06 • Expected significance vs int. luminosity 0.04 0.02 Int. Luminosity Significance Significance 0 -10 -5 15 -15 5 10 0 (no ZZ, BDT) (with ZZ, BDT) (fb⁻¹) $S = -2\ln(L(0)/L(0))$ 0.1 Pseudo Data (20 fb⁻¹) 0.09 $10 (N_s = 6, N_h = 5.5)$ 1.97 σ 1.45 σ 0.08 0.07 20 (N_s=12, N_b=11) 2.74 σ 1.98 σ $Higgs(0^+)$ Higgs(0) 0.06
- 20 (N_s=12, N_b=11)2.74 σ 1.98 σ 30 (N_s=18, N_b=16.5)3.36 σ 2.40 σ 40 (N_s=24, N_b=22)3.85 σ 2.77 σ 50 (N_s=30, N_b=27.5)4.26 σ 3.10 σ

0.05

0.03

0.01

Higgs Boson Width

Strong mass dependent $\Gamma_{\rm H}$ = 3.5 MeV @ 120 GeV
1.4 GeV @ 200 GeV
8.4 GeV @ 300 GeV
68.0 GeV @ 500 GeV

- ➢At low mass region (<200 GeV), detector resolution dominates mass resolution</p>
- At high mass, intrinsic width becomes dominant

