Properties Measurement of $H \rightarrow ZZ^* \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ with ATLAS

Haijun Yang (Shanghai Jiao Tong University)

LHC mini-Workshop Zhejiang University, HangZhou, China November 8-11, 2014

Outline

- Discovery of the Higgs Boson
- Higgs Production and Decays at LHC
- Event Selection of $H \rightarrow ZZ^* \rightarrow 4\ell$
- Higgs Properties : mass, width, spin, parity, couplings
- Analysis of Single Resonance $Z \rightarrow 4l$: cross section, BR
- Summary

References:

PLB 726 pp.88-119, pp. 120-144 (2013) PRD 90, 052004 (2014), PRL 112, 231806(2014) ATLAS-CONF-2013-013, ATLAS-CONF-2013-034 ATLAS-CONF-2014-009, ATL-COM-PHYS-2014-1403

Standard Model and Discovery of the Higgs

Higgs boson is proposed to responsible for the electroweak symmetry breaking, particles acquire mass when interacting with the Higgs field.

The Higgs boson was discovered by ATLAS and CMS at LHC in July, 2012.
 F. Englert and P. Higgs won the Nobel Prize in Physics in 2013.

CERN's Large Hadron Collider (LHC)

LHC is the world's largest collider (7-14 TeV) ATLAS Collaboration (38 countries, 174 institutions, ~ 3000) CMS Collaboration (41 counties, 179 institutions, ~3300)

LHC - B

LHC

CMS Point 5

CIMIS

CFRN

Point

ALICE

Point 2

314214/20

隧道 (26.7 公里)

LHC: Proton-Proton Collisions

The ATLAS Detector: Huge Camera

Particle Detection

□ Different particles have different signatures in detectors

ATLAS Data Samples

7 TeV data samples (2011)

- -4.5 fb⁻¹ for physics analysis
- Peak luminosity 3.6×10^{33} cm⁻²s⁻¹

8 TeV data samples (2012)

- -20.3 fb⁻¹ for physics analysis
- Peak luminosity 7.7×10^{33} cm⁻²s⁻¹
- **Data-taking efficiency: ~95.5%**

□ Significant pileup events

Major Challenge (Large Pileup)

□ Large pileup events result in big challenge to the detector, reconstruction and particle identification (eg. e, γ , τ , b) !

Boosted Decision Trees (BDT)

Higgs Boson Production at LHC

Higgs Boson Decay

Higgs decay branching

ratio at m_H=125 GeV

- ▶bb: 57.7% (huge QCD background)
- ➤ WW: 21.5% (easy identification in di-lepton mode, complex background)
- ττ: 6.3% (complex final states with τ leptonic and/or hadronic decays)
- ZZ*: 2.6% ("gold-plated", clean signature of 4-lepton, high S/B, excellent mass peak)
- γγ: 0.23% (excellent mass resolution, high sensitivity)

 $H \rightarrow ZZ^* \rightarrow 4I$ production rate: 1 out of 10¹³ collision events

$H \rightarrow ZZ^* \rightarrow 4\ell$ Overview

Extremely clean – "Gold-plated" channel Fully reconstructed final states

- o Good mass resolution (~ 1.6-2.4 GeV)
- o High S/B ratio (~ 1-2)
- o Low decay branching fraction
- □ Currently statistically limited $\circ 4.5 \text{ fb}^{-1}$ @ 7 TeV + 20.3 fb⁻¹ @ 8 TeV $\circ \text{Expect 68 SM H} \rightarrow ZZ^* \rightarrow 4\ell \text{ (e, }\mu\text{) events}$
- Properties measurement
 - o Higgs mass, width, spin, parity, couplings.^{10⁴}¹⁰⁰
 - Critical to determine whether it is fully compatible with the SM Higgs boson

$H \rightarrow ZZ^* \rightarrow 4l$ Event Selection

Trigger match with single and/or di-lepton trigger

Four sub-channels: 4e, 2e2µ, 2µ2e, 4µ

	Event Pre-selection
	Electrons
	"MultiLepton" quality GSF electrons with $E_{\rm T} > 7$ GeV and $ \eta < 2.47$
	Muons
	combined or segment-tagged muons with $p_{\rm T} > 6$ GeV and $ \eta < 2.7$
	Maximum one calo-tagged or standalone muon
	calo-tagged muons with $p_{\mathrm{T}} > 15\mathrm{GeV}$ and $ \eta < 0.1$
standalo	ne muons with $p_{\rm T} > 6$ GeV, $2.5 < \eta < 2.7$ and $\Delta R > 0.2$ from closest segment-tagged
	Event Selection
Kinematic	Require at least one quadruplet of leptons consisting of two pairs of same-flavour
Selection	opposite-charge leptons fulfilling the following requirements:
	$p_{\rm T}$ thresholds for three leading leptons in the quadruplet 20, 15 and 10 GeV
	Leading di-lepton mass requirement 50 GeV $< m_{12} < 106$ GeV
	Sub-leading di-lepton mass requirement $m_{threshold} < m_{34} < 115$ GeV
	Remove quadruplet if alternative same-flavour opposite-charge di-lepton gives $m_{\ell\ell} < 5$ GeV
	$\Delta R(\ell, \ell') > 0.10(0.20)$ for all same (different) flavour leptons in the quadruplet.
Isolation	Lepton track isolation ($\Delta R = 0.20$): $\Sigma p_T/p_T < 0.15$
	Electron calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_T / E_T < 0.20$
	Muon calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_T / E_T < 0.30$
	Stand-Alone muons calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_T / E_T < 0.15$
Impact	Apply impact parameter significance cut to all leptons of the quadruplet.
Parameter	For electrons : $d_0/\sigma_{d_0} < 6.5$
Significance	For muons : $d_0 / \sigma_{d_0} < 3.5$

Background Estimation

Main background is $ZZ^{(*)}$ production

MC simulation, scaled to theoretical cross section

Reducible backgrounds:

- Zbb, Z+light jets, tt
- Estimated using data-driven methods
 - Define background-enriched/signal-depleted control reigions
 - Extrapolate to signal region using transfer factors

 Estimates agree well with data in control region where isolation and d₀ requirements are removed for subleading pair

Selected Higgs Candidates

TABLE III. The number of events expected and observed for a $m_H = 125$ GeV hypothesis for the four-lepton final states. The second column shows the number of expected signal events for the full mass range. The other columns show the number of expected signal events, the number of ZZ^{*} and reducible background events, and the signal-to-background ratio (s/b), together with the numbers of observed events, in a window of $120 < m_{4\ell} < 130$ GeV for 4.5 fb⁻¹ at $\sqrt{s} = 7$ TeV and 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV as well as for the combined sample.

Final state	Signal Full mass range	Signal	ZZ^*	$Z + jets, t\bar{t}$	s/b	Expected	Observed
$\sqrt{s} = 7 \text{ TeV}$							
$\dot{4}\mu$	1.00 ± 0.10	0.91 ± 0.09	0.46 ± 0.02	0.10 ± 0.04	1.7	1.47 ± 0.10	2
2e2µ	0.66 ± 0.06	0.58 ± 0.06	0.32 ± 0.02	0.09 ± 0.03	1.5	0.99 ± 0.07	2
2µ2e	0.50 ± 0.05	0.44 ± 0.04	0.21 ± 0.01	0.36 ± 0.08	0.8	1.01 ± 0.09	1
4 <i>e</i>	0.46 ± 0.05	0.39 ± 0.04	0.19 ± 0.01	0.40 ± 0.09	0.7	0.98 ± 0.10	1
Total	2.62 ± 0.26	2.32 ± 0.23	1.17 ± 0.06	0.96 ± 0.18	1.1	4.45 ± 0.30	6
$\sqrt{s} = 8 \text{ TeV}$							
4μ	5.80 ± 0.57	5.28 ± 0.52	2.36 ± 0.12	0.69 ± 0.13	1.7	8.33 ± 0.6	12
2e2µ	3.92 ± 0.39	3.45 ± 0.34	1.67 ± 0.08	0.60 ± 0.10	1.5	5.72 ± 0.37	7
$2\mu 2e$	3.06 ± 0.31	2.71 ± 0.28	1.17 ± 0.07	0.36 ± 0.08	1.8	4.23 ± 0.30	5
4 <i>e</i>	2.79 ± 0.29	2.38 ± 0.25	1.03 ± 0.07	0.35 ± 0.07	1.7	3.77 ± 0.27	7
Total	15.6 ± 1.6	13.8 ± 1.4	6.24 ± 0.34	2.00 ± 0.28	1.7	22.1 ± 1.5	31
$\sqrt{s} = 7$ TeV a	and $\sqrt{s} = 8$ TeV						
4μ	6.80 ± 0.67	6.20 ± 0.61	2.82 ± 0.14	0.79 ± 0.13	1.7	9.81 ± 0.64	14
2e2µ	4.58 ± 0.45	4.04 ± 0.40	1.99 ± 0.10	0.69 ± 0.11	1.5	6.72 ± 0.42	9
$2\mu 2e$	3.56 ± 0.36	3.15 ± 0.32	1.38 ± 0.08	0.72 ± 0.12	1.5	5.24 ± 0.35	6
4e	3.25 ± 0.34	2.77 ± 0.29	1.22 ± 0.08	0.76 ± 0.11	1.4	4.75 ± 0.32	8
Total	18.2 ± 1.8	16.2 ± 1.6	7.41 ± 0.40	2.95 ± 0.33	1.6	26.5 ± 1.7	37

Candidates of 4-lepton

- → BR(H→ZZ*) = 2.63%, BR(ZZ*→4I)=0.45%
- → About 68 H→ ZZ*→4l events produced

 \rightarrow Observed 37 candidates with 16 Higgs \rightarrow ZZ* \rightarrow 4l signal

ATLAS H \rightarrow ZZ* \rightarrow 4 μ Candidate

\square M_{4µ} = 125.1 GeV, M₁₂ = 86.3 GeV, M₃₄ = 31.6 GeV

Higgs $\rightarrow ZZ^* \rightarrow 41$ Candidates Evolution

Candidates of 4-lepton

→ Left: BDT_{zz} output with requirement of 120 < m₄₁ < 130 GeV
 → Right: m₄₁ output with requirement of BDT_{zz} > 0

Higgs Mass Measurement

□ Two dimensional (2D) fit to m_{41} and BDT_{ZZ*} based on profile likelihood method to obtain Higgs mass.

Higgs Mass Measurements

Measurements of Higgs Signal Strength

→ Signal strength: μ = 1.3±0.2(ATLAS) PLB 726 pp.88-119 → μ = 0.8 ±0.14 (CMS) ATLAS-CONF-2014-009

2

Significance of $H \rightarrow ZZ^* \rightarrow 4l$

Given Higgs mass $m_H = 124.51$ and 125.36 GeV, Expected significances are 5.8σ and 6.2σ, Observed significances are 8.2σ and 8.1σ.

Direct Measurement of Higgs Width

□ Using per-event-error method, direct limit on the total width of the Higgs boson $\Gamma_{\rm H}$ < 2.6 GeV @ 95% C.L.

Indirect Measurement of Higgs Width

 □ High-mass off-peak region of the H→ZZ→4l channel above the 2M_V threshold have sensitivity to Higgs production through off-shell and background interference effects.
 (Ref: ATL-COM-PHYS-2014-1403)

$$\frac{\sigma_{\text{off-shell}}^{gg \to H^* \to VV}}{\sigma_{\text{off-shell}}^{gg \to H^* \to VV}} = \mu_{\text{off-shell}} = \kappa_{g,\text{off-shell}}^2 \cdot \kappa_{V,\text{off-shell}}^2$$

 $\mu_{\text{off-shell}}$ is the off-shell signal strength

 $\frac{\sigma_{\text{on-shell}}^{gg \to H \to VV}}{\sigma_{\text{on-shell}, SM}^{gg \to H \to VV}} = \mu_{\text{on-shell}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{V,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}}$

assumption $\kappa_{i,\text{on-shell}} = \kappa_{i,\text{off-shell}}$

The combination of both on-shell and off-shell measurements of signal strength achieve a significantly higher sensitivity to the total width $\Gamma_{\rm H}$.

ME and BDT Outputs

□ The expected 95% C.L. upper limits

on $\mu_{\text{off-shell}}$ •

Indirect Measurement of Higgs Width

□ The expected 95% C.L. upper limits on $\mu_{off-shell}$, is 10.1 and the observed limit is 5.

$H \rightarrow ZZ^* \rightarrow 4l$: Spin and Parity

 In X→ ZZ^(*) → 4ℓ decays, m_{Z1}, m_{Z2} and the production and decay angles are sensitive to the spin-parity of X

 $\{m_{4l}, m_{Z_1}, m_{Z_2}, \cos \theta_1, \cos \theta_2, \phi, \cos \theta^*, \phi_1\}$

- Construct a discriminant between different hypotheses using two different multivariate techniques:
 - BDT (machine learning)
 - J^P-MÈLA (use theoretical differential decay rates to construct a matrix element based likelihood ratio)
- Use events in range $115 < m_{4\ell} < 130 \; {
 m GeV}$
- Test SM 0⁺ hypothesis against alternative hypotheses 0⁻, 1⁺, 1⁻, 2⁺_m

$H \rightarrow ZZ^* \rightarrow 4l$: Spin and Parity

BDT analysis variables:

 m_{Z1}, m_{Z2} from Higgs --> ZZ* \rightarrow 4I + production and decay angles

Exclusion (1-CL_s):

Observed 0⁻ exclusion 97.8% Observed 1⁺ exclusion 99.8% Observed 2⁺_m exclusion 83.2%

		BDT analysis						
		tested	J^{P} for	tested 0 ⁺ for				
		an assumed 0+		an assumed J^P	CLS			
		expected	observed	observed*				
0-	p_0	0.0037	0.015	0.31	0.022			
1+	p_0	0.0016	0.001	0.55	0.002			
1-	p_0	0.0038	0.051	0.15	0.060			
2_{m}^{+}	p_0	0.092	0.079	0.53	0.168			
2-	p_0	0.0053	0.25	0.034	0.258			

Probing Higgs Production (VBF)

• Event characteristics allow measurement of signal strength from different production modes

Candidate event with $m_{4\ell} = 123.5$ GeV in VBF-like category

Probing Higgs Production (VBF)

 \square BDT_{VBF} based on 5 variables:

- $-\,M_{jj},\,\eta_{jj}\,$, $\eta_{leading\,jet}$
- $-p_{T}$ of leading and subleading jets

Probing Higgs Production (VBF)

Fermion and Vector Couplings

□ The likelihood scan as a function of the ratio of fermion to vector-boson coupling scale factors, $\lambda_{\rm FV} = \kappa_{\rm F}/\kappa_{\rm V}$

The value of $\lambda_{FV} = 0$ is disfavored at the 4σ level.

Fermion and Vector Couplings

Coupling scale factors 2-parameter benchmark model: $\kappa_V = \kappa_W = \kappa_Z$ $\kappa_F = \kappa_t = \kappa_b = \kappa_c = \kappa_{\tau} = \kappa_q$

(Gluon coupling are related to top, b, and their interference in tree level loop diagrams)

Assume no BSM contributions to loops: $gg \rightarrow H$ and no BSM decays (no invisible decays)

$$\kappa_V = 1.15 \pm 0.08$$

 $\kappa_F = 0.99^{+0.17}_{-0.15}$.

 $\frac{\sigma \cdot B (gg \to H \to \gamma \gamma)}{\sigma_{\rm SM}(gg \to H) \cdot B_{\rm SM}(H \to \gamma \gamma)} = \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$

 $\Rightarrow \kappa_F = 0$ is excluded (>5 σ)

Analysis of Single Resonance $Z \rightarrow 4\ell$

- □ The Z →4l production was first observed at the LHC by ATLAS and CMS along with the Higgs boson discovery in 4l decay channel
- \Box Cross section measurement of the Z \rightarrow 4l production provides
 - □ A SM test for a rare decay process, meas. of $\sigma(4I)$ and BR(Z→4I)
 - \Box A complementary test of the detector response for H \rightarrow 4I detection

ATLAS: Phys. Rev. Lett. 112, 231806 (2014) arXiv:1403.5657 **CMS:**JHEP 12 (2012) 034, arXiv:1210.3844

Production of single resonance $Z \rightarrow 4I$

Four lepton 4I final states: 4e, 4m and 2e2m

 Resonant 4l production via an s-channel Z→ℓ⁺ℓ⁻ include an additional ℓ⁺ℓ⁻ from internal conversion of Z*/γ*

✤ > 96% 4I event rate from s-channel at Z resonance (80< m_{4I} < 100 GeV, m_{2I}>5 GeV)

q \bar{q} \bar{q} \bar{q} $Z^{0/\gamma^{*}}$ $Z^{0/\gamma^{*}}$ ℓ^{+}

Non-resonant 4l production

- via t-channel: qq $\rightarrow Z^*/\gamma^* + Z^*/\gamma^* \rightarrow 41$ including the Z production with ISR internal conversion (< 4% 41 event rate at the Z resonance)
- via gg \rightarrow ZZ \rightarrow 4I (~0.1% 4I event rate at the Z resonance)

Cuts Optimization

Events / 2.5 Ge/

ATLAS Higgs \rightarrow ZZ* \rightarrow 4I selection:

• $pT_{min} > 7$ (6) GeV for e (μ)

m₁₂ > 50 GeV; m₃₄ > 12 GeV
 Select 37 Z→4I events in Z mass window

- The Z→4I process is dominant by low mass m34 and low pT leptons (the pT-ordered 4th leptons)
- Need to detect low pT leptons

Loosen some Higgs cuts :

e: $p_T > 20, 15, 10, 7 \text{ GeV}$ μ : $p_T > 20, 15, 8, 4 \text{ GeV}$ $m_{12} > 20 \text{ GeV}, m_{34} > 5 \text{ GeV}$

Increase statistics by a factor of 5

ATLAS: Selected Z→4l Events

\sqrt{s}	Channel	Data	Total expected	MC signal (Z/ZZ $ ightarrow 4\ell$)	Backgrounds
7 TeV	eeee eeμμ μμee μμμμ Combined	$ \begin{array}{c} 1 \\ 7 \\ 5 \\ 8 \\ 21 \end{array} $	$\begin{array}{c} 1.8 \pm 0.3 \\ 8.0 \pm 0.4 \\ 3.3 \pm 0.3 \\ 11.3 \pm 0.5 \\ 24.4 \pm 1.2 \end{array}$	$\begin{array}{c} 1.7 \pm 0.3 \\ 7.7 \pm 0.4 \\ 3.2 \pm 0.3 \\ 11.2 \pm 0.3 \\ 23.8 \pm 1.2 \end{array}$	$\begin{array}{c} 0.12 \pm 0.04 \\ 0.18 \pm 0.09 \\ 0.08 \pm 0.04 \\ 0.09 \pm 0.04 \\ 0.47 \pm 0.11 \end{array}$
8 TeV	eeee eeμμ μμee μμμμ Combined	$16 \\ 48 \\ 16 \\ 71 \\ 151$	$\begin{array}{c} 14.4 \pm 1.2 \\ 43.2 \pm 2.3 \\ 19.3 \pm 1.2 \\ 68.8 \pm 3.0 \\ 145.7 \pm 7.7 \end{array}$	$\begin{array}{c} 14.3 \pm 1.2 \\ 42.9 \pm 2.2 \\ 19.1 \pm 1.2 \\ 68.4 \pm 2.9 \\ 145 \pm 7 \end{array}$	$\begin{array}{c} 0.16 \pm 0.03 \\ 0.36 \pm 0.05 \\ 0.21 \pm 0.04 \\ 0.41 \pm 0.05 \\ 1.14 \pm 0.13 \end{array}$

Acceptance A₄₁ and Correction Factor C₄₁

$$\begin{split} p_{T}^{\ell_{1}} &> \text{20 GeV}; p_{T}^{\ell_{2}} > \text{15 GeV}; \\ p_{T}^{\ell_{3}} &> \text{10 GeV (if electron), } > 8 \text{ GeV (if muon);} \\ p_{T}^{\ell_{4}} &> 7 \text{ GeV (if electron), } > 4 \text{ GeV (if muon);} \\ |\eta^{\mu}| &< \text{2.7 for all muons; } |\eta^{e}| < \text{2.5 for all electrons;} \\ \Delta R(\ell, \ell') &> \text{0.1 for all same flavor parings and } > \text{0.2 for different flavor pairings;} \\ M_{\ell+\ell-} &> \text{20 GeV for at least one SFOS lepton pair;} \\ M_{\ell+\ell-} &> 5 \text{ GeV for all SFOS lepton pair;} \\ 80 &< M_{4\ell} < \text{100 GeV.} \end{split}$$

 $A_{4l} = \frac{Number of \ 4l \ events \ selected \ in \ the \ fiducial \ volume}{Number \ of \ 4l \ events \ in \ the \ phase \ space}$

 $C_{4l} = \frac{Number \ of \ 4l \ events \ passing \ full \ event \ selection}{Number \ of \ 4l \ events \ selected \ in \ the \ fiducial \ volume}$

ATLAS: Fiducial Cross Sections

$$\sigma_{Z \to 4\ell}^{fiducial} = \frac{N_{obs} - N_{bkg}}{\mathcal{L}C_{Z \to 4\ell}}$$

ATLAS

\sqrt{s}	Final state	$C_{4\ell}$	Measured $\sigma^{\it Fid}$ fb
7 TeV	ееее µµµµ ееµµ µµее	21.5% 59.2% 49.0% 36.3%	$0.910^{+1.39}_{-0.72}$ (stat) ± 0.14 (syst) ± 0.02 (lumi) fb $2.970^{+1.18}_{-0.94}$ (stat) ± 0.07 (syst) ± 0.05 (lumi) fb $3.091^{+1.35}_{-1.05}$ (stat) ± 0.16 (syst) ± 0.05 (lumi) fb $3.015^{+1.57}_{-1.17}$ (stat) ± 0.30 (syst) ± 0.06 (lumi) fb
8 TeV	ееее µµµµ ееµµ µµее	36.06% 71.13% 55.54% 46.24%	$2.16^{+0.59}_{-0.50} \text{ (stat)} \pm 0.16 \text{ (syst)} \pm 0.06 \text{ (lumi) fb}$ $4.89^{+0.66}_{-0.56} \text{ (stat)} \pm 0.13 \text{ (syst)} \pm 0.14 \text{ (lumi) fb}$ $4.23^{+0.65}_{-0.59} \text{ (stat)} \pm 0.15 \text{ (syst)} \pm 0.12 \text{ (lumi) fb}$ $1.68^{+0.46}_{-0.39} \text{ (stat)} \pm 0.07 \text{ (syst)} \pm 0.04 \text{ (lumi) fb}$

ATLAS: Phase-space xsections $\sigma_{Z \rightarrow 4\ell}^{total}$

ATLAS measurement in final phase space 80 < m₄₁ < 100 GeV and m₁₊₁ > 5 GeV

\sqrt{s}	4ℓ state	$N_{4\ell}^{ m obs}$	$N_{4\ell}^{\mathrm{exp}}$	$N_{4\ell}^{ m bkg}$	$C_{4\ell}$	$\sigma^{ m fid}_{Z4\ell}$ [fb]	$A_{4\ell}$		$\sigma_{Z4\ell}$ [fb]
$7 { m TeV}$	ee + ee	1	1.8 ± 0.3	0.12 ± 0.04	21.5%	$0.9^{+1.4}_{-0.7} \pm 0.14 \pm 0.02$	7.5%	Ae Au	$32 \pm 11 \pm 1.0 \pm 0.6$
	$\mu\mu + \mu\mu$	8	11.3 ± 0.5	0.08 ± 0.04	59.2%	$3.0^{+1.2}_{-0.9} \pm 0.07 \pm 0.05$	18.3%	$\int \frac{de}{dt} dt$	$52 \pm 11 \pm 1.0 \pm 0.0$
	$ee + \mu\mu$	7	7.9 ± 0.4	0.18 ± 0.09	49.0%	$3.1^{+1.4}_{-1.1} \pm 0.16 \pm 0.05$	15.8%	ک مور ا	$44 \pm 14 \pm 3.3 \pm 0.0$
	$\mu\mu + ee$	5	3.3 ± 0.3	0.07 ± 0.04	36.3%	$3.0^{+1.6}_{-1.2} \pm 0.30 \pm 0.06$	8.8%	$\int 2e^{2\mu}$	$44 \pm 14 \pm 5.5 \pm 0.9$
	$\operatorname{combined}$	21	24.2 ± 1.2	0.44 ± 0.14					$76\pm18\pm4\pm1.4$
$8 { m TeV}$	ee + ee	16	14.4 ± 1.4	0.14 ± 0.03	36.1%	$2.2^{+0.6}_{-0.5}\pm0.20\pm0.06$	7.3%	LA0 44	$56 \pm 6 \pm 1.8 \pm 1.6$
	$\mu\mu + \mu\mu$	71	68.8 ± 2.7	0.34 ± 0.05	71.1%	$4.9^{+0.7}_{-0.6}\pm0.13\pm0.14$	17.8%	∫ 4 0, 4 <i>µ</i>	50 ± 0 ± 1.0 ± 1.0
	$ee + \mu\mu$	48	43.2 ± 2.1	0.32 ± 0.05	55.5%	$4.2^{+0.7}_{-0.6}\pm0.16\pm0.12$	14.8%	J 2024	$52 \pm 7 \pm 2.4 \pm 1.5$
	$\mu\mu + ee$	16	19.3 ± 1.3	0.18 ± 0.04	46.2%	$1.7^{+0.5}_{-0.4} \pm 0.10 \pm 0.04$	7.9%	$\int 2e2\mu$	021112.111.0
	combined	151	146 ± 7	1.0 ± 0.11					$107\pm9\pm4\pm3.0$

ATLAS	Phase-space Cross Section (fb)
SM NLO Prediction (7 TeV)	90 ± 2.1 fb
Measured (7 TeV)	76 ±18(stat) ±4(syst) ±1.4(lumi) fb
SM NLO Prediction (8 TeV)	104.8 ± 2.5 fb
Measured (8 TeV)	107 ± 9(stat) ± 4(syst) ±3.0(lumi) fb

ATLAS: BR of $Z \rightarrow 4I$

□ Measure the Z→2µ cross section and take the known Br(Z→2m) to get inclusive cross section of Z from pp collisions
 □ Cancels luminosity uncertainty and theoretical uncertainty of σ(pp→Z)
 □ Derive the BR (Z→4I) as below

$$BR(Z \to 4\ell) = BR(Z \to 2\mu)(1-f_t) \frac{\left(N_{\text{obs.}} - N_{\text{bkg.}}\right)^{4\ell} (C \times A)^{2\mu}}{\left(N_{\text{obs.}} - N_{\text{bkg.}}\right)^{2\mu} (C \times A)^{4\ell}}$$

Uncertainty on BR($Z \rightarrow 2\mu$) is small. f_t = fraction of *t*-channel in phase-space.

- Cancel luminosity uncertainty: 2.8% (8 TeV)
- Cancel NLO σ(Z) calculation uncertainties (Scales, PDF, NNLO correction): 4%

Branching Ratio of $Z \rightarrow 4I$

Branching fraction result uses an error weighted combination of the 7 and 8 TeV results. For $(m_{2l} > 5 \text{ GeV}, 80 < m_{4l} < 100 \text{ GeV})$

Quantity	\sqrt{s}	Value	ATLAS
Measured	7 TeV	(2.67 ± 0.62)	$(\text{stat}) \pm 0.14 \text{ (syst)}) \times 10^{-6}$
	8 TeV	(3.33 ± 0.27)	$(\text{stat}) \pm 0.11 \text{ (syst)}) \times 10^{-6}$
	Combined	(3.20 ± 0.25)	$({\rm stat}) \pm 0.13 ~({\rm syst})) \times 10^{-6}$
Expected		(3.33 ± 0.01)	$) \times 10^{-6}$

For $M_{\ell\ell} > 4$ GeV

- We observe $(4.31\pm0.34~\rm (stat)\pm0.16~\rm (syst))\times10^{-6}$ and expect $(4.50\pm0.01)\times10^{-6}$, (ATLAS combining 7 & 8 TeV measurements)
- CMS observes (4.2^{+0.9}_{-0.8} (stat) ± 0.2 (syst)) × 10⁻⁶ and expects 4.45 × 10⁻⁶.

ATLAS: 4-lepton Mass Scale

- 4-lepton mass fitted with the convolution of a Breit-Wigner and a Gaussian distributions for 4 channels
- □ Fitted results show good consistence with MC predictions □ Example of 4μ mass fit for data and MC

Summary

- □ With 2011 (4.5 fb⁻¹ @ 7TeV) and 2012 (20.3 fb⁻¹ @ 8 TeV) datasets, the Higgs boson is observed in the H→ZZ*→4 ℓ channel with local significance of 8.1 σ .
- □ The best fit mass of the Higgs boson from $H \rightarrow ZZ^* \rightarrow 4\ell$

Channel	Mass measurement [GeV]
$H \to \gamma \gamma$	$125.98 \pm 0.42(\text{stat}) \pm 0.28(\text{syst}) = 125.98 \pm 0.50$
$H \to ZZ^* \to 4\ell$	$124.51 \pm 0.52(\text{stat}) \pm 0.06(\text{syst}) = 124.51 \pm 0.52$
Combined	$125.36 \pm 0.37(\text{stat}) \pm 0.18(\text{syst}) = 125.36 \pm 0.42$

- □ The ratio of signal strength for bosonic (VBF+VH) and fermionic (ggF+ttH) production modes are measured, the compatibility of VBF production with SM expectation is 30%.
- **\Box** The SM Higgs boson with $J^P = 0^+$ hypothesis is favored.
- □ The Higgs mass width $\Gamma_{\rm H}$ < 2.6 GeV / 42 MeV @ 95% C.L. for direct / indirect measurements.
- □ BR of $Z \rightarrow 4\ell$ is 4.3×10^{-6} which agree with SM prediction.

Backup

CMS: $Z \rightarrow 4I$ Analysis

Final state channels	4e	4μ	2e2µ	4ℓ
Irreducible background (pp $ ightarrow { m Z}\gamma^* ightarrow 4\ell$)	0.07	0.25	0.14	0.46 ± 0.05
Other (reducible) backgrounds	0.01	0.01	0.05	0.07 ± 0.1
Expected signal (pp $ ightarrow \mathrm{Z} ightarrow 4\ell$)	3.8	13.6	12.0	29.4 ± 2.6
Total expected (simulation)	3.9	13.9	12.2	30.0 ± 2.6
Observed events	2	14	12	28
Yield from fit to the observed mass distribution	-	13.6 ± 3.8	11.5 ± 3.1	27.3 ± 5.4

Phase space cuts

80<M₄₁<100 GeV; M₂₁>4 GeV

SM prediction (FEWZ @ NNLO): $\sigma(pp \rightarrow Z \rightarrow 4I) = 120 \pm 5 \text{ fb}$ BR(Z $\rightarrow 4I) = 4.45 \times 10^{-6}$ (LO CalcHEP)

$$\begin{aligned} \sigma(\mathrm{pp} \to \mathrm{Z}) \ \mathcal{B}(\mathrm{Z} \to 4\ell) &= 112^{+23}_{-20} \,(\mathrm{stat.})^{+7}_{-5} (\mathrm{syst.})^{+3}_{-2} \,(\mathrm{lum.}) \,\mathrm{fb}, \\ \mathcal{B}(\mathrm{Z} \to 4\ell) &= \left(4.2^{+0.9}_{-0.8} \,(\mathrm{stat.}) \pm 0.2 \,(\mathrm{syst.})\right) \times 10^{-6} \end{aligned}$$

Categories of $H \rightarrow ZZ^* \rightarrow 4l$ Events

Table 12: Expected and observed yields in the VBF enriched, VH-hadronic enriched, VH-leptonic enriched and ggF enriched categories. The yields are given for the different production modes and the ZZ^* and reducible background for 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV and 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV. The estimates are given for both the $m_{4\ell}$ mass range 120–130 GeV and the mass range above 110 GeV.

Enriched		Sign	al		Back	ground	Total	Observed
category	$ggF + b\bar{b}H + t\bar{t}H$	VBF	VH-hadronic	VH-leptonic	ZZ^*	$Z + \text{jets}, t\bar{t}$	expected	
			$120 < m_4$	$_{\ell\ell} < 130~{ m GeV}$				
VBF	1.18 ± 0.37	0.75 ± 0.04	0.083 ± 0.006	0.013 ± 0.001	0.17 ± 0.03	0.25 ± 0.14	2.4 ± 0.4	3
$({\rm BDT}_{\rm VBF} > 0)$	0.48 ± 0.15	0.62 ± 0.04	0.023 ± 0.002	0.004 ± 0.001	0.06 ± 0.01	0.10 ± 0.05	1.26 ± 0.15	1
VH-hadronic	0.40 ± 0.12	0.034 ± 0.004	0.20 ± 0.01	0.009 ± 0.001	0.09 ± 0.01	0.09 ± 0.04	0.80 ± 0.12	0
VH-leptonic	0.013 ± 0.002	< 0.001	< 0.001	0.069 ± 0.004	0.015 ± 0.002	0.016 ± 0.019	0.11 ± 0.02	0
ggF	12.8 ± 1.3	0.57 ± 0.02	0.24 ± 0.01	0.11 ± 0.01	7.1 ± 0.2	2.7 ± 0.4	23.5 ± 1.4	34
			${ m m_{4\ell}}>$	$110 { m GeV}$				
VBF	1.4 ± 0.4	0.82 ± 0.05	0.092 ± 0.007	0.022 ± 0.002	20 ± 4	1.6 ± 0.9	24. \pm 4.	32
$({\rm BDT}_{\rm VBF}>0)$	0.54 ± 0.17	0.68 ± 0.04	0.025 ± 0.002	0.007 ± 0.001	8.2 ± 1.6	0.6 ± 0.3	10.0 ± 1.6	12
VH-hadronic	0.46 ± 0.14	0.038 ± 0.004	0.23 ± 0.01	0.015 ± 0.001	9.0 ± 1.2	0.6 ± 0.2	10.3 ± 1.2	13
VH-leptonic	0.026 ± 0.004	< 0.002	< 0.002	0.15 ± 0.01	0.63 ± 0.04	0.11 ± 0.14	0.92 ± 0.16	1
ggF	14.1 ± 1.5	0.63 ± 0.02	0.27 ± 0.01	0.17 ± 0.01	351. \pm 20	16.6 ± 2.2	383. \pm 20	420

CMS: $H \rightarrow ZZ^* \rightarrow 41$

 \Box The observed and expected Higgs significance is 6.8 σ and 6.7σ , respectively. Measured mass (GeV) Channel $126.2^{+1.5}_{-1.8}$ $\Box m_{41} = 125.6 \text{ GeV}$ 4e $126.3_{-0.7}^{+0.9}$ 2e2µ

 $\mu = 0.93^{+0.26}_{-0.23}(stat.)^{+0.13}_{-0.09}(syst.)^{-4\mu}_{-4\mu}$

CMS: Higgs mass width

6.4 ± 0.3	0.38 ± 0.02
0.1 ± 0.0	
2.0 ± 0.3	0.5 ± 0.1
$\frac{2.0 \pm 0.0}{8.5 \pm 0.5}$	0.9 ± 0.1
15.4 ± 1.2	1.6 ± 0.3
	0.08 ± 0.01
0.70 ± 0.03	0.87 ± 0.07
0.28 ± 0.01	0.21 ± 0.01
0.21 ± 0.01	0.16 ± 0.01
16.6 ± 1.3	3.0 ± 0.4
20	5
 Da Da Z+ Zγ m₊ 140 	ta X = 126 GeV 160 180 m (GeV)
	2.0 ± 0.3 8.5 ± 0.5 15.4 ± 1.2 0.70 ± 0.03 0.28 ± 0.01 0.21 ± 0.01 16.6 ± 1.3 20 $L = 5.1 \text{ fb}^{-+}; \forall s =$ $Z + z \gamma$ $R + z = z \gamma$ $R + z = z \gamma$

 The expected upper limit of Higgs mass width is 2.8 GeV and the observed upper limit is 3.4 GeV, at a 95% CL.

Higgs Width (CMS)

https://cds.cern.ch/record/1670066/files/HIG-14-002-pas.pdf

The production cross section as a function of m_{ZZ} can be written as:

$$\frac{d\sigma_{\rm gg\to H\to ZZ}}{dm_{ZZ}^2} \propto g_{\rm ggH}^2 g_{\rm HZZ}^2 \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2 \Gamma_{\rm H}^2},$$
(1)

where g_{ggH} (g_{HZZ}) is the coupling constant of the Higgs boson to gluons (to Z bosons), and $F(m_{ZZ})$ is a function which depends on the (virtual) Higgs and Z boson production and decay dynamics. In the resonant and off-shell regions, the integrated cross sections are

$$\sigma_{\rm gg \to H \to ZZ}^{\rm on-peak} \propto \frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{\Gamma_{\rm H}}, \quad \sigma_{\rm gg \to H \to ZZ}^{\rm off-peak} \propto g_{\rm ggH}^2 g_{\rm HZZ}^2.$$
 (2)

	4ℓ	$2\ell 2\nu$	Combined
Expected 95% CL limit, r	11.5	10.7	8.5
Observed 95% CL limit, r	6.6	6.4	4.2
Observed 95% CL limit, $\Gamma_{\rm H}(MeV)$	27.4	26.6	17.4
Observed best fit, r	$0.5 \substack{+2.3 \\ -0.5}$	$0.2^{+2.2}_{-0.2}$	$0.3^{+1.5}_{-0.3}$
Observed best fit, $\Gamma_{H}(MeV)$	$2.0 \stackrel{+9.6}{_{-2.0}}$	$0.8 \stackrel{+9.1}{_{-0.8}}$	$1.4 {+6.1 \atop -1.4}$

Higgs Width (CMS)

https://cds.cern.ch/record/1670066/files/HIG-14-002-pas.pdf

Constraints on BSM

New heavy particles may contribute to loops

- Introduce effective κ_g , κ_γ to allow heavy BSM particles contribute to the loops
- Tree-level couplings: $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau$ etc set to 1
 - Absorb all difference into loop couplings
 - Indirectly fixed normalization of Hiags width

Couplings tested for anomalies w.r.t. fermion and boson, W/Z & vertex loop contributions at \pm 10%-15% precision

Higgs Spin and Parity with CMS

□ The data disfavor the hypotheses JP with a CLs value in the range of 0.001% - 10%.

Higgs Detection Significance

	observed			expected		
data set	min p_0	significance $m_H(p_0)$ r		$\min p_0(m_H)$	significance	
		$[\sigma]$			$[\sigma]$	
$\sqrt{s} = 7 \text{ TeV}$	2.5×10^{-3}	2.8	125.6 GeV	3.5×10^{-2}	1.8	
$\sqrt{s} = 8 \text{ TeV}$	8.8×10^{-10}	6.0	124.1 GeV	2.8×10^{-5}	4.0	
combined	2.7×10^{-11}	6.6	124.3 GeV	5.7×10^{-6}	4.4	

- Signal significance
 6.6 σ (Measured)
 4.4 σ (Expected)
- → > 5σ discovery in H→ZZ*→4ℓ channel

Higgs Production: ggF vs.VBF

57

$H \rightarrow ZZ^* \rightarrow 4l$: Spin and CP

- For $J^P = 2_m^+$ model:
 - Graviton-like tensor with minimal couplings to SM particles
 - See Phys. Rev. D81 (2010) 075022
 - Production via gg or qq
- Scan fraction of qq production between 0 and 100%
- Sensitivity is stable as a function of qq fraction
- Observed exclusion (0⁺ vs 2⁺_m) at 83.2 CL for 100% ggF produced state

Value of test statistic, q, as a function of the $q\bar{q}$ production fraction, $f_{q\bar{q}}$

Search for High Mass $H \rightarrow ZZ$, WW

ATLAS-CONF-2013-067

Extend the Higgs search to high mass assume SM-like width, and decay to WW/ZZ

95% C.L. exclusion of a SM-like heavy Higgs up to ~ 650 GeV

Constraints on BSM Loops

New particles may contribute to loops

- Introduce effective κ_g, κ_γ to allow heavy BSM particles contribute to the loops
- Tree-level couplings: $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau$ set to 1
 - Absorb all difference into loop couplings
 - Indirectly fixed normalization of Higgs width

$$\Gamma_{\rm H} = \frac{\kappa_{\rm H}^2(\kappa_i)}{(1 - {\rm BR}_{\rm i.,u.})} \Gamma_{\rm H}^{\rm SM}$$

$$\kappa_{g} = 1.00^{+0.23}_{-0.16}$$

 $\kappa_{\gamma} = 1.17^{+0.16}_{-0.13}$

 $BR_{i.,u.} = -0.16^{+0.29}_{-0.30}$

ATLAS Trigger

Table 9: Summary of the triggers that are used during the 2012 data taking for the three analysis channels. When multiple chains are indicated, it is intended that the OR among them is requested.

Channel	Single-lepton	Di-lepton				
4e	e24vhi_medium1, e60_medium1	2e12Tvh_loose1, 2e12Tvh_loose1_L2StarB(only data)				
4μ	mu24i_tight, mu36_tight	2mu13, mu18_mu8_EFFS				
2e2µ	4µ OR 4e OR e12Tvh_medium1_mu8 OR e24vhi_loose1_mu8					

Table 10: Summary of the triggers that are used during the 2011 data taking. In each data taking period, the OR of single and di-lepton triggers is used to select each signature.

Single-lepton triggers							
Period	B-I	J	К	L-M			
4μ	EF_mu18_MG	EF_mu18_MG_medium	EF_mu18_MG_medium	EF_mu18_MG_medium			
4e	EF_e20_medium	EF_e20_medium	EF_e22_medium	EF_e22vh_medium1			
$2e2\mu$	4μ OR $4e$						
Di-lepton triggers							
Period	od B-I J K L-M						
4μ	EF_2mu10_loose	EF_2mu10_loose	EF_2mu10_loose	EF_2mu10_loose			
4e	EF_2e12_medium EF_2e12_medium		EF_2e12T_medium	EF_2e12Tvh_medium			
2e2µ	4μ OR $4e$ OR EF_e10_medium_mu6						

Higgs Production and Decays

Table 2: Higgs boson production cross sections for gluon fusion, vector-boson fusion and associated production with a W or Z boson in pp collisions at \sqrt{s} of 7 TeV and 8 TeV [11]. The quoted uncertainties correspond to the total theoretical systematic uncertainties with linear sum of QCD scale and PDF+ α_s uncertainties. The production cross section for the associated production with a W or Z boson is negligibly small for $m_H > 300$ GeV. The decay branching ratio for $H \rightarrow 4\ell$, with $\ell = e$ or μ , is reported in the last column [11].

m_H	$\sigma(gg \rightarrow H)$	$\sigma\left(qq' \rightarrow Hqq'\right)$	$\sigma\left(q\bar{q}\rightarrow WH\right)$	$\sigma(q\bar{q} \rightarrow ZH)$	$\mathrm{BR}\left(H \to ZZ^{(*)} \to 4\ell\right)$
[GeV]	[pb]	[pb]	[pb]	[pb]	[10 ⁻³]
			$\sqrt{s} = 7$ TeV		
123	$15.8^{+2.3}_{-2.4}$	1.25 ± 0.03	$0.60\substack{+0.02\\-0.03}$	0.33 ± 0.02	0.103
125	15.3 ± 2.3	1.22 ± 0.03	0.57 ± 0.02	0.32 ± 0.02	0.125
127	14.9 ± 2.2	1.20 ± 0.03	0.54 ± 0.02	0.30 ± 0.02	0.148
			$\sqrt{s} = 8$ TeV		
123	20.2 ± 3.0	1.61 ± 0.05	0.73 ± 0.03	0.42 ± 0.02	0.103
125	19.5 ± 2.9	$1.58\substack{+0.04\\-0.05}$	0.70 ± 0.03	0.39 ± 0.02	0.125
127	18.9 ± 2.8	1.55 ± 0.05	$0.66^{+0.02}_{-0.03}$	0.37 ± 0.02	0.148

Is it the SM Higgs Boson?

✤ Higgs production (m_H = 125 GeV)

Couplings (new force!) • : fermions

: vector bosons

Spin and Parity

g_F (Yukawa coupling) =V2 x m_F/v g_V (Gauge coupling) = $2m_V^2/v$ (v is the vacuum expectation value)

Coupling Measurements

Coupling strengths $\kappa_i \&$ ratio: $\kappa_F = g_F/g_{F,SM}$, $\kappa_V = g_V/g_{V,SM}$, $\lambda_{ij} = \kappa_i / \kappa_j$

Model	Probed	Parameters of	Functional assumptions				ions	Example: $gg \rightarrow H \rightarrow \gamma\gamma$
	couplings	interest	ΚV	K _F	Кg	κγ	КН	
1	Couplings to	κ_V, κ_F	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F,\kappa_V)/\kappa_H^2(\kappa_F,\kappa_V)$
2	fermions and bosons	$\lambda_{FV}, \kappa_{VV}$	\checkmark	\checkmark	\checkmark	\checkmark	-	$\kappa_{VV}^2 \cdot \lambda_{FV}^2 \cdot \kappa_{\gamma}^2(\lambda_{FV}, \lambda_{FV}, \lambda_{FV}, 1)$
3	Custodial symmetry	$\lambda_{WZ}, \lambda_{FZ}, \kappa_{ZZ}$	-	\checkmark	\checkmark	\checkmark	-	$\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ}, \lambda_{FZ}, \lambda_{FZ}, \lambda_{WZ})$
4		$\lambda_{WZ}, \lambda_{FZ}, \lambda_{\gamma Z}, \kappa_{ZZ}$	-	\checkmark	\checkmark	-	-	$\kappa^2_{ZZ} \cdot \lambda^2_{FZ} \cdot \lambda^2_{\gamma Z}$
5	Vertex loops	<i>Кg</i> , <i>Кү</i>	=1	=1	-	-	\checkmark	$\kappa_g^2 \cdot \kappa_\gamma^2 / \kappa_H^2(\kappa_g,\kappa_\gamma)$

Spin Analysis with $H \rightarrow \gamma \gamma$

Spin Analysis With $H \rightarrow WW^*$

$J^{P} = 0^{+} vs 2^{+}$

$f_{q \bar q}$	2^+ assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 2^+)$	Obs. $p_0(J^p = 0^+)$	Obs. $p_0(J^p = 2^+)$	$\operatorname{CL}_{\mathrm{s}}(J^p=2^+)$
100%	0.013	$3.6 \cdot 10^{-4}$	0.541	$1.7 \cdot 10^{-4}$	$3.6 \cdot 10^{-4}$
75%	0.028	0.003	0.586	0.001	0.003
50%	0.042	0.009	0.616	0.003	0.008
25%	0.048	0.019	0.622	0.008	0.020
0%	0.086	0.054	0.731	0.013	0.048

Exclusion (1- CL_s):

Observed 2⁺ (qq=100%) exclusion 99.96% Observed 2⁺ (qq = 0%) exclusion 95.2%

MVA Discriminant: Higgs Spin and CP

