Higgs Property Measurement with ATLAS

Haijun Yang
(on behalf of the ATLAS)
Shanghai Jiao Tong University

Hadron Collider Physics Symposium
HCP 2012, Kyoto University, Japan
November 12-16, 2012
Observation of a new Particle (2012.7.4)!

Is it the SM Higgs?

- Verify the new observed particle
 - Spin-0 particle
 - Spin-1: excluded by $H \rightarrow \gamma\gamma$
 - Spin-2: look at angular correlations

- CP-nature
 - SM Higgs CP-even, extended Higgs sectors has CP-odd or mixed states
 - Look at angular correlations

- Couplings
 - Gauge / Yukawa couplings $\rightarrow g_{vH}, g_{fH} \propto m$
 - Unitarity in $W_L W_L$ scattering $\rightarrow g_{WWH} \propto m_W$
 - Higgs self-couplings, determine shape of Higgs potential via trilinear and quartic couplings, $V = \mu^2 |\Phi|^2 + \lambda |\Phi|^4 + $ constant
ATLAS Combined Results

Discovery of a particle with a local significance of 5.9σ.

Channel	Fitted m_H	Observed	Expected
$H \rightarrow \gamma\gamma$ | 126.5 GeV | 4.5σ | 2.5σ |
$H \rightarrow ZZ^* \rightarrow 4l$ | 125.0 GeV | 3.6σ | 2.7σ |
$H \rightarrow WW^* \rightarrow l_\nu l_\nu$ | 125.0 GeV | 2.8σ | 2.3σ |
Combined | **126.0 GeV** | **5.9σ** | **4.9σ** |
ATLAS Combined Results

- $H \rightarrow bb, \tau\tau$ and WW^* analyses have been updated using 13 fb$^{-1}$ data collected at 8 TeV in 2012.
- Higgs decays to $\gamma\gamma$, ZZ^* and WW^* are established, but $H \rightarrow bb, \tau\tau$ still lack of statistics to draw definitive conclusion.

Best-fit signal strength: $\mu = 1.3 \pm 0.3$

Best-fit Higgs mass m_H: 126.0 ± 0.4 (stat) ± 0.4 (syst) GeV
- **Observation of \(H \rightarrow \gamma\gamma \) excludes spin-1**

- **Higgs has two types of couplings**
 - “Gauge” couplings (to bosons)
 - Yukawa couplings (to fermions)

- **Explore tension between SM value and observation from different Higgs production modes:** \(\mu_{VBF+VH} \) vs. \(\mu_{ggF+ttH} \)
Model independent coupling studies which are directly related to experimental observables.

2D contour: μ_{VBF+VH} vs. $\mu_{ggF+ttH}$

$H \rightarrow ZZ^* \rightarrow 4l$ has low statistics and uses inclusive analysis.

The signal strength ratios cancel the branching ratios of different channels so that the results can be compared directly.
Assumptions (LHC HXSWG, arXiv:1209.0040):

- The signal observed in different channels originate from a single narrow resonance with mass near 125 GeV.
- The width of the assumed Higgs boson near 125 GeV is neglected, hence the signal cross section can be decomposed in the following for all channels:

\[(\sigma \cdot \text{BR}) (i\bar{i} \rightarrow H \rightarrow ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_H}\]

- Only modifications of couplings strengths are taken into account, while the tensor structure of the couplings is assumed to be same as in the SM prediction (CP-even scalar). [ATLAS-CONF-2012-127]
Depending on the benchmark model, κ_g, κ_γ and κ_H are either functions of other couplings or independent parameters.

Notation for $gg \rightarrow H \rightarrow \gamma\gamma$

\[
(\sigma \cdot \text{BR})(gg \rightarrow H \rightarrow \gamma\gamma) = \sigma_{ggF} \cdot \frac{\Gamma_{\gamma\gamma}}{\Gamma_H}
\]

\[
\frac{\sigma_{ggF}^{\text{SM}}}{\sigma_{ggF}^{\text{SM}}} = \kappa_g^2 \\
\frac{\Gamma_{\gamma\gamma}^{\text{SM}}}{\Gamma_{\gamma\gamma}^{\text{SM}}} = \kappa_\gamma^2 \\
\frac{\Gamma_H^{\text{SM}}}{\Gamma_H^{\text{SM}}} = \kappa_H^2
\]

\[
= \kappa_g^2 \sigma_{\text{SM}}(gg \rightarrow H) \cdot \frac{\kappa_\gamma^2}{\kappa_H^2} \cdot \text{BR}_{\text{SM}}(H \rightarrow \gamma\gamma)
\]

fixed
No BSM particle contributions to $gg \rightarrow H$, $H \rightarrow \gamma\gamma$ and the total width. Two coupling scale factors κ_F for fermions and κ_V for bosons,

$$\kappa_F = \kappa_t = \kappa_b = \kappa_{\tau}$$

$$\kappa_V = \kappa_W = \kappa_Z$$

68% CL intervals

$$\kappa_F \in [-1.0, -0.7] \cup [0.7, 1.3]$$

$$\kappa_V \in [0.9, 1.0] \cup [1.1, 1.3]$$

Same as above, but without the assumption on the total width

$$\lambda_{FV} = \frac{\kappa_F}{\kappa_V}, \quad \kappa_{VV} = \kappa_V \cdot \kappa_V / \kappa_H$$

68% CL intervals

$$\lambda_{FV} \in [-1.1, -0.7] \cup [0.6, 1.1]$$

$$\kappa_{VV} = 1.2^{+0.3}_{-0.6}$$
Probing custodial symmetry of the W/Z Coupling

- Similar to previous benchmark model, but $\kappa_V \rightarrow \kappa_W$ and κ_Z, so there are three free parameters κ_W, κ_Z and κ_F. Identical couplings scale factors for the W and Z are required within tight bounds by SU(2) custodial symmetry and ρ parameter.

- The VBF process is parametrized with κ_W and κ_Z according to the Standard Model.

\[
\lambda_{WZ} = \frac{\kappa_W}{\kappa_Z} = 1.07^{+0.35}_{-0.27}
\]
In many extensions of the SM, the couplings of the light Higgs boson to up-type and down-type fermions differ ($|\lambda_{du}|$).

The measurement is dominated by channels where we don’t observe an excess, $H\to bb (\mu=-0.4 \pm 1.1)$ and $H\to \tau\tau (\mu=0.7 \pm 0.6)$.

\begin{itemize}
 \item \textbf{ATLAS Preliminary}
 \item $\sqrt{s} = 7\text{TeV}, \int L dt = 4.8 \text{ fb}^{-1}$
 \item $\sqrt{s} = 8\text{TeV}, \int L dt = 5.8-5.9 \text{ fb}^{-1}$
 \item exp. $-2 \ln \Lambda(\lambda_{du})$
\end{itemize}

\begin{itemize}
 \item \textbf{ATLAS Preliminary}
 \item $\sqrt{s} = 7\text{TeV}, \int L dt = 4.8 \text{ fb}^{-1}$
 \item $\sqrt{s} = 8\text{TeV}, \int L dt = 5.8-5.9 \text{ fb}^{-1}$
 \item exp. $-2 \ln \Lambda(\lambda_{lq})$
\end{itemize}

95\% CL
\[\lambda_{du} \in [-2.0, 1.8] \]
\[\lambda_{du} = \frac{k_d}{k_u} \]

95\% CL
\[\lambda_{lq} \in [-2.1, 2.1] \]
\[\lambda_{lq} = \frac{k_l}{k_q} \]
For $H \rightarrow \gamma\gamma$ and $gg \rightarrow H$ vertices, effective scale factors κ_γ and κ_g are introduced (two free parameters). Non-SM particles can contribute to $H \rightarrow \gamma\gamma$ and $gg \rightarrow H$ loops or in new final states.

Using only SM contributions to total width and $\kappa_i = 1$ for all SM particles.

\[
\begin{align*}
\kappa_g &= 1.1^{+0.4}_{-0.2} \\
\kappa_\gamma &= 1.2^{+0.3}_{-0.2}
\end{align*}
\]

68% CL

$-2 \ln \Lambda(\kappa, \kappa_g) < 2.3$

$-2 \ln \Lambda(\kappa_\gamma, \kappa_g) < 6.0$

Compatibility 35%

$\Gamma_H = \frac{\kappa_H^2 (\kappa_i)}{(1 - BR_{inv, undet})} \Gamma_{SM}^H$

$BR_{inv, undet.} < 0.68$
A new Higgs-like particle was observed on July 4, 2012

Mass: $m_H = 126.0 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (syst)} \text{ GeV}$

Signal strength: $\mu = 1.3 \pm 0.3$

Higgs decays to $\gamma\gamma$, ZZ^* and WW^* (gauge coupling) are established, but $H \rightarrow bb$, $\tau\tau$ (Yukawa coupling) still lack of statistics to draw definitive conclusion.

The spin-1 is excluded due to observation of $H \rightarrow \gamma\gamma$.

Uncertainties of couplings parameters \sim20-30%, no significant deviations from the SM couplings are observed.

Please stay tuned!
<table>
<thead>
<tr>
<th>Higgs Boson Decay</th>
<th>Subsequent Decay</th>
<th>Sub-Channels</th>
<th>$\int L , dt$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow ZZ^{(*)}$</td>
<td>4ℓ</td>
<td>${4e, 2e2\mu, 2\mu2e, 4\mu}$</td>
<td>4.8</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>$-$</td>
<td>10 categories ${p_T^{\ell}\otimes \eta_\gamma \otimes \text{conversion}} \oplus {2\text{-jet}}$</td>
<td>4.8</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau$</td>
<td>$\tau_{\text{lep}}\tau_{\text{lep}}$, $\tau_{\text{lep}}\tau_{\text{had}}$, $\tau_{\text{had}}\tau_{\text{had}}$</td>
<td>${e\mu\otimes 0\text{-jet}} \oplus {\ell\ell\otimes 1\text{-jet, 2-jet, boosted, } VH}$</td>
<td>4.7</td>
</tr>
<tr>
<td>$VH \rightarrow Vbb$</td>
<td>$Z \rightarrow \nu\nu$, $W \rightarrow \ell\nu$, $Z \rightarrow \ell\ell$</td>
<td>$E_{\text{miss}}^{\nu}\in{120 - 160, 160 - 200, \geq 200 , \text{GeV}} \otimes {2\text{-jet, 3-jet}}$, $p_T^{W}\in{< 50, 50 - 100, 100 - 150, 150 - 200, \geq 200 , \text{GeV}}$, $p_T^{\ell}\in{< 50, 50 - 100, 100 - 150, 150 - 200, \geq 200 , \text{GeV}}$</td>
<td>4.6</td>
</tr>
</tbody>
</table>

2012 $\sqrt{s} =$8 TeV

<table>
<thead>
<tr>
<th>Higgs Boson Decay</th>
<th>Subsequent Decay</th>
<th>Sub-Channels</th>
<th>$\int L , dt$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow ZZ^{(*)}$</td>
<td>4ℓ</td>
<td>${4e, 2e2\mu, 2\mu2e, 4\mu}$</td>
<td>5.8</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>$-$</td>
<td>10 categories ${p_T^{\ell}\otimes \eta_\gamma \otimes \text{conversion}} \oplus {2\text{-jet}}$</td>
<td>5.9</td>
</tr>
<tr>
<td>$H \rightarrow WW^{(*)}$</td>
<td>$e\nu\mu\nu$</td>
<td>${e\mu, \mu e} \otimes {0\text{-jet, 1-jet}}$</td>
<td>13</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau$</td>
<td>$\tau_{\text{lep}}\tau_{\text{lep}}$, $\tau_{\text{lep}}\tau_{\text{had}}$, $\tau_{\text{had}}\tau_{\text{had}}$</td>
<td>${\ell\ell\otimes 1\text{-jet, 2-jet, boosted, } VH}$</td>
<td>13</td>
</tr>
<tr>
<td>$VH \rightarrow Vbb$</td>
<td>$Z \rightarrow \nu\nu$, $W \rightarrow \ell\nu$, $Z \rightarrow \ell\ell$</td>
<td>$E_{\text{miss}}^{\nu}\in{120 - 160, 160 - 200, \geq 200 , \text{GeV}} \otimes {2\text{-jet, 3-jet}}$, $p_T^{W}\in{< 50, 50 - 100, 100 - 150, 150 - 200, \geq 200 , \text{GeV}}$, $p_T^{\ell}\in{< 50, 50 - 100, 100 - 150, 150 - 200, \geq 200 , \text{GeV}}$</td>
<td>13</td>
</tr>
</tbody>
</table>
Higgs decays to $\gamma\gamma$, ZZ* and WW* are well established, but $H \rightarrow bb$, $\tau\tau$ still lack statistics to draw definitive conclusion.

Best-fit Higgs mass:

$m_H = 126 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (syst)} \text{ GeV}$

Best-fit signal strength:

$\mu = 1.4 \pm 0.3$
Higgs Boson Production at LHC

Gluon-gluon fusion $gg \rightarrow H$ and vector-boson fusion $qq \rightarrow qqH$ are dominant processes.

@125 GeV: $\sigma_{ggH} = 19.5$ pb, $\sigma_{VBF} = 1.6$ pb, $\sigma_{WH} = 0.70$ pb, $\sigma_{ZH} = 0.39$ pb, $\sigma_{ttH} = 0.13$ pb

\Rightarrow ~230k events in 2011+2012 samples
Higgs Boson Decay

Higgs decay branching ratio at $m_H=125$ GeV

- $\bar{b}b$: 57.7% (huge QCD background)
- WW^*: 21.5% (easy identification in di-lepton mode, complex background)
- $\tau\tau$: 6.3% (complex final states with τ leptonic and/or hadronic decays)
- ZZ^*: 2.6% (“gold-plated”, clean signature of 4-lepton, high S/B, excellent mass peak)
- $\gamma\gamma$: 0.23% (excellent mass resolution, high sensitivity)

Higgs boson production rate: 1 out of 10^{12} collision events
Higgs Boson Width

- **Strong mass dependent**
 \[\Gamma_H = 3.5 \text{ MeV } @ \text{120 GeV} \]
 \[1.4 \text{ GeV } @ \text{200 GeV} \]
 \[8.4 \text{ GeV } @ \text{300 GeV} \]
 \[68.0 \text{ GeV } @ \text{500 GeV} \]

- At low mass region (<200 GeV), detector resolution dominates mass resolution.

- At high mass, intrinsic width becomes dominant.

\[\Gamma_H \approx \frac{3G_F M_H^3}{16\pi\sqrt{2}} \]

\[\approx 500 \text{ GeV} \cdot \left(\frac{M_H}{1 \text{ TeV}} \right)^3 \]
Higgs Boson Decays

The decay properties of the Higgs boson are fixed, if the mass is known:

\[\Gamma(H \rightarrow f\bar{f}) = N_C \left(\frac{G_F}{4\sqrt{2}\pi} \right) m_f^2 (M_H^2) M_H \]

\[\Gamma(H \rightarrow VV) = \delta_V \left(\frac{G_F}{16\sqrt{2}\pi} \right) M_H^3 \left(1 - 4x + 12x^2 \right) \beta_V \]

where: \(\delta_Z = 1, \delta_W = 2, x = M_V^2 / M_H^2, \beta = \text{velocity} \)

\[\Gamma(H \rightarrow gg) = \frac{G_F}{36\sqrt{2}\pi} \frac{\alpha_s^2(M_H^2)}{M_H^3} \left[1 + \left(\frac{95}{4} - \frac{\tau N_f}{6} \right) \frac{\alpha_s}{\pi} \right] \]

\[\Gamma(H \rightarrow \gamma\gamma) = \frac{G_F}{128\sqrt{2}\pi} \frac{\alpha_s^2}{M_H^3} \left[\frac{4}{3} N_C e_t^2 - 7 \right]^2 \]

Higgs Boson:

- it couples to particles proportional to their masses
- decays preferentially in the heaviest particles kinematically allowed