Discovery of Higgs boson at LHC

Haijun Yang

Colloquium at Department of Physics Shanghai Jiao Tong University September 12, 2012

Introduction of Sub-atomic World

Particle Physics studies the properties of fundamental building block of matters and their interactions.

Interactions of Particles

□ Force is explained by exchange of force carriers between particles (Gravitational, Electromagentic, Strong, Weak)
 □ Long-range force: light force carrier (γ, graviton)
 □ Short-range force: heavy force carrier (W[±], Z⁰)

Standard Model of Elementary Particles

 Elementary Particles
 > 100 years' discoveries
 The SM is in excellent agreement with the numerous experimental measurements.

 The only missing SM particle is the Higgs boson which is proposed to responsible for the electroweak symmetry breaking, particles acquire mass when interacting with the Higgs field.

Hunting for the Higgs boson is one of main goals in particle physics (LEP, Tevatron, LHC)

Higgs Mechanism

The potential in (a) is symmetric

□ The potential in (b) the potential is still symmetric, but the symmetry of the ground state is spontaneously broken.

 \Box Spontaneously symmetry breaking \rightarrow Nambu-Goldstone bosons (no spin, mass)

Peter Higgs showed that Goldstone bosons need not occur when a local symmetry is spontaneously broken in a relativistic theory. Instead, the Goldstone mode provides the third polarisation of a massive vector field. The other mode of the original scalar doublet remains as a massive spin-zero particle – the Higgs boson.

Physicists "Higgs field"

Physicists "Higgs field"

Source: Cern/UCL

Our Tool: High Energy Collider

D Energy is the currency in particle physics !

- □ Shorter distance \leftrightarrow Higher energy ($\lambda = \hbar/p$)
- Heavier matter particle \leftrightarrow Higher energy (E = mc²)

u High energy beam and big machine to study the smallest scale

Our Tool: High Energy Collider

History of the Universe

- □ Higher energy beam collisions \leftrightarrow higher temperature (E = κ T)
- Use high energy collider to recreate the conditions right after the Big Bang.

Energy ≈ 8 TeV, distance $\approx 10^{-19}$ m

Large Electron Positron Collider at CERN

□ Search for Higgs boson at LEP (e⁺e⁻, 26.7km) □ LEP1 (1989): √s = 91 GeV □ LEP2 (2000): √s = 209 GeV

September 12, 2012

Search for Higgs boson at LEP

→Results: exclude m_H < 114.4 GeV/c² at 95% CL (Physics Letters B 565 (2003) 61-75)

September 12, 2012

Tevatron at Fermilab (FNAL)

□ Search for Higgs boson at Tevatron (1.96 TeV): 1983 – 2011

Proton-antiproton collision, 6.3km

September 12, 2012

Search for Higgs boson at Tevatron

→ Results (arXiv:1207.0449): 2.5σ excess at m_H=120-130 GeV

September 12, 2012

Large Hadron Collider at CERN

September 12, 2012

Tunnel (26.7 km)

Particle Acceleration and Collision

□ Proton-proton collision at LHC

Collisions at LHC

September 12, 2012

LHC on BBC

BBC Homepage

Science & Nature Homepage

In Horizon:

Full index Non-flash index

Recent Horizons Pick of the archive Web exclusives

Contact Us

Like this page? Send it to a friend! You are here: <u>BBC</u> > <u>Science & Nature</u> > <u>Horizon</u> > <u>Recent Horizons</u> > The Six Billion Dollar Experiment

The Six Billion Dollar Experiment

Tuesday 1 May 2007, 9pm, BBC Two

In the coming months the most complex scientific instrument ever built will be switched on. The **Large Hadron Collider** promises to recreate the conditions right after the Big Bang. By revisiting the beginning of time, scientists hope to unravel some of the deepest secrets of our Universe.

Within these first few moments the building blocks of the Universe were created. The search for these **fundamental particles** has occupied scientists for decades but there remains one particle that has stubbornly refused to appear in any experiment. The Higgs Boson is so crucial to our understanding of the Universe that it has been dubbed the **God particle**. It explains how fundamental particles acquire mass, or as one scientist plainly states: "It is what makes stuff stuff..."

- JOURNEY: Through space and time
- VOTE: Should we risk creating a black hole?
- VIEW: Highlights from the programme

LHC on New York Times

September 12, 2012

ATLAS and CMS Collaborations

Detector: A Toroidal LHC ApparatuS (ATLAS)

- -~ 3000 physicists
- ~ 1000 students
- -175 institutes
- 38 countries

- Detector: Compact Muon Sclenoid (CMS)
 - ~ 3300 physicists
 - -~ 1500 students
 - -179 institutes
 - -41 countries

20+ years of worldwide collaborative efforts

Academic Ranking of World Universities (Top-25)

Ranking of World U. by SJTU (2010) http://www.arwu.org/ARWU2010.jsp

Rank	University Name	Rank	University Name
1	Harvard U.	14	UC, San Diego
2	UC, Berkeley	15	U. Pennsylvania
3	Stanford U.	16	U. Washington
4	MIT	17	U. Wisconsin
5	U. Cambridge	18	John Hopkins U.
6	Caltech	19 (no physics)	UC, San Francisco
7	Princeton U.	20	U. Tokyo
8	Columbia U.	21	U. College London
9	U. Chicago	22	U. Michigan
10	U. Oxford	23	Swiss Federal Inst. of Technology, Zurich
11	Yale U.	24	Kyoto U.
12	Cornell U.	25	UIUC
13	UC, Los Angeles	26	Imperial College

ATLAS Member Institutes

Ranking of World U. by SJTU (2010) http://www.arwu.org/ARWU2010.jsp

Rank	University Name	Rank	University Name
1 (ATLAS)	Harvard U.	14	UC, San Diego
2 (ATLAS)	UC, Berkeley	15 (ATLAS)	U. Pennsylvania
3 (ATLAS)	Stanford U.	16 (ATLAS)	U. Washington
4 (ATLAS)	MIT	17 (ATLAS)	U. Wisconsin
5 (ATLAS)	U. Cambridge	18	John Hopkins U.
6	Caltech	19 (no physics)	UC, San Francisco
7	Princeton U.	20 (ATLAS)	U. Tokyo
8 (ATLAS)	Columbia U.	21 (ATLAS)	U. College London
9 (ATLAS)	U. Chicago	22 (ATLAS)	U. Michigan
10 (ATLAS)	U. Oxford	23	Swiss Federal Inst. Of Technology, Zurich
11 (ATLAS)	Yale U.	24 (ATLAS)	Kyoto U.
12	Cornell U.	25 (ATLAS)	UIUC
13	UC, Los Angeles	26	Imperial College

ATLAS and CMS Member Institutes

Ranking of World U. by SJTU (2010) http://www.arwu.org/ARWU2010.jsp

Rank	University Name	Rank	University Name
1 (ATLAS)	Harvard U.	14 (CMS)	UC, San Diego
2 (ATLAS)	UC, Berkeley	15 (ATLAS)	U. Pennsylvania
3 (ATLAS)	Stanford U.	16 (ATLAS)	U. Washington
4 (ATLAS, CMS)	MIT	17 (ATLAS,CMS)	U. Wisconsin
5 (ATLAS)	U. Cambridge	18 (CMS)	John Hopkins U.
6 (CMS)	Caltech	19 (no physics)	UC, San Francisco
7 (CMS)	Princeton U.	20 (ATLAS)	U. Tokyo
8 (ATLAS)	Columbia U.	21 (ATLAS)	U. College London
9 (ATLAS)	U. Chicago	22 (ATLAS)	U. Michigan
10 (ATLAS)	U. Oxford	23 (CMS)	Swiss Federal Inst. Of Technology, Zurich
11 (ATLAS)	Yale U.	24 (ATLAS)	Kyoto U.
12 (CMS)	Cornell U.	25 (ATLAS)	UIUC
13 (CMS)	UC, Los Angeles	26 (CMS)	Imperial College

The ATLAS Detector: Huge Camera

The CMS Detector

Particle Detection

□ Different particles have different signatures in detectors

Higgs Boson Mass Constraint

 □ Direct searches at LEP (2000): m_H > 114.4 GeV @ 95% C.L.
 □ Direct search at LHC (2012.3) m_H < 127 GeV @ 95% C.L.
 □ Precision electroweak data are sensitive to Higgs mass, global fit mass: m_H = 94⁺²⁹₋₂₄ GeV

September 12, 2012

Higgs Boson Production at LHC

Inelastic pp cross section at 7 TeV is ~ 60 mb

Higgs Boson Width

Strong mass dependent $\Gamma_{\rm H}$ = 3.5 MeV @ 120 GeV
1.4 GeV @ 200 GeV
8.4 GeV @ 300 GeV
68.0 GeV @ 500 GeV

- At low mass region (<200 GeV), detector resolution dominates mass resolution</p>
- At high mass, intrinsic width becomes dominant

Higgs Boson Decay

Higgs decay branching

ratio at m_H=125 GeV

- ≻bb: 57.7% (huge QCD background)
- ➤WW: 21.5% (easy identification in di-lepton mode, complex background)
- ττ: 6.3% (complex final states with τ leptonic and/or hadronic decays)
- ZZ*: 2.6% ("golden-plate", clean signature of 4-lepton, high S/B, excellent mass peak)
 γγ: 0.23% (excellent mass resolution, high sensitivity)

Branching ratios 2010 WW bb LHC HIGGS XS WG 10⁻¹ ττ gę cc 10⁻² Zγ 10⁻³ 100 120 140 160 180 200 M_H [GeV]

Higgs boson production rate: 1 out of 10¹² collision events

September 12, 2012

ATLAS Data Samples

7 TeV data samples (2011)

8 TeV data samples (2012)

- □ Data-taking efficiency: ~94%
- **Significant** pileup events

Major Challenge

□ Large pileup events result in big challenge to the detector, reconstruction and particle identification !

Higgs $\rightarrow \gamma \gamma$

- Very simple signature, but small rate Br($H \rightarrow \gamma \gamma$) ~ 2×10⁻³;
- Important decay mode for the low mass region (100-140 GeV)

Reducible background from γj and jj productions

Theoretical uncertainty $\Delta \sigma / \sigma \sim 30\%$, not reliable !
Higgs $\rightarrow \gamma \gamma$

Diphoton mass $m_{\gamma\gamma}$ as the final discriminant variable $m^2 = 2E_{\gamma_1}E_{\gamma_2}\left(1 - \cos\Delta\phi_{\gamma\gamma}\right)$

Model signal and background using analytical functions: Signal: Crystal-Ball function (core) + Gaussian (outlier) Backgrounds: exponentials, polynomials, ...

A total 59059 events selected, expect ~170 signal events at 126 GeV

September 12, 2012

Search for Higgs boson

Higgs $\rightarrow \gamma \gamma$

Consistent excesses in both 2011 and 2012 data

A minimum
$$p_0$$
 at 126.5 GeV
 $p_0 = 2 \times 10^{-6} \implies 4.5 \sigma$

The measured signal strength, the excess relative to the SM expectation, at 126 GeV:

Samples	Mass (GeV)	p-value	Obs. Sig.	Exp. Sig.
2011	126	3×10 ⁻⁴	3.4 σ	1.6 σ
2012	127	5×10 ⁻⁴	3.2 σ	1.9 σ
Combined	126.5	2×10 ⁻⁶	4.5σ	2.5 σ

JÖ

Results from CMS ($H \rightarrow \gamma \gamma$)

Results from CMS ($H \rightarrow \gamma \gamma$)

Higgs $\rightarrow ZZ^* \rightarrow 4\ell$: the golden channel

- The gold-plated channel over a wide range of potential Higgs mass.
- **Clean signature:**
- 4 isolated leptons, full reconstruction;
- Mass peak over backgrounds, good mass resolution.

Small backgrounds:

Irreducible SM ZZ* production and reducible Z+jets, top, ...

But even smaller signal rate: @125 GeV $BR(ZZ \rightarrow 4\ell) = 0.4$

BR $(ZZ \rightarrow 4\ell) = 0.45\%$, BR $(H \rightarrow ZZ^*) = 2.6\%$ $\Rightarrow \sigma_H \times BR (H \rightarrow ZZ \rightarrow 4\ell) = 2.6 \text{ fb}$

⇒ ~25 events in 2011+2012 samples

Selection efficiency to the 4th power of lepton efficiency: $0.7^4 \sim 0.25, 0.8^4 \sim 0.41 \Rightarrow$ critical to improve lepton selection!

September 12, 2012

Higgs $\rightarrow ZZ^* \rightarrow 4\ell$

A small cluster of events populates around 125 GeV

In the region 125 ± 5 GeV						
Dataset	2	011	2	012	2011+2012	
Expected B only Expected S m _H =125 GeV Observed in the data	2 <u>+</u> 2 <u>+</u>	ŧ0.3 0.3 4		3±0.4 3±0.5 9	5.1±0.8 5.3±0.8 13	
2011+ 2012		4µ	I	2e2µ	4e	
Data Expected S/B Reducible/total background		6 1.6 5%)	5 1 45%	2 0.5 55%	

Single resonant contributions Enhanced by relaxing mass and pT requirements

Higgs \rightarrow ZZ* \rightarrow 4 ℓ

Consistent excesses in both 2011 and 2012 data

A minimum
$$p_0$$
 at 125 GeV
 $p_0 = 2 \times 10^{-4} \implies 3.6 \sigma$

Samples	Mass (GeV)	p-value	Obs. Sig.	Exp. Sig.
2011	125	0.6%	2.5 σ	1.6 σ
2012	125.5	0.5%	2.6 σ	2.1 σ
Combined	125	0.02%	3.6 σ	2.7 σ

Results from CMS $(H \rightarrow ZZ^* \rightarrow 4\ell)$

Significance: 3.8σ (expected), 3.2σ (observed)

Candidate of $H \rightarrow ZZ^* \rightarrow 4l$ (CMS)

$H \rightarrow ZZ^* \rightarrow 4\mu$ Candidate

\square M_{4µ} = 125.1 GeV, M₁₂ = 86.3 GeV, M₃₄ = 31.6 GeV

Combined Results from ATLAS

□ Observed significance 6.0σ (expected 5.0σ) □ Fitted mass: 126.0 ± 0.4 (stat) ± 0.4 (syst) GeV

Combined Results from CMS

□ Observed significance 5.1σ (expected 5.2σ) □ Fitted mass: 125.3 ± 0.4 (stat) ± 0.5 (syst) GeV

Observation of a New Particle !

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERNI)

EUROPEAN ORCANIZATION FOR NUCLEAR RESEARCH (CERN)

31 Jul 2012

arXiv:1207.7214v1 [hep-ex]

Observation of a New Partic Model Higgs Boson with t

The ATLA

A search for the Standard Model Higgs bos at the LHC is presented. The datasets used of 4.8 fb⁻¹ collected at $\sqrt{s} = 7$ TeV in 2011 and 5.1 channels $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(*)}$ published results of searches for $H \rightarrow ZZ^{(*)}$, Wimproved analyses of the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and Hproduction of a neutral boson with a measured This observation, which has a significance of 5 fluctuation probability of 1.7×10^{-9} , is compatible Higgs boson.

Phys. Lett. B 716 (20

CERN-PH-EP/2012-220 2012/08/01

w boson at a mass of 125 GeV with the experiment at the LHC

he CMS Collaboration*

Abstract

searches for the standard model Higgs boson in proton-7 and 8 TeV in the CMS experiment at the LHC, using to integrated luminosities of up to 5.1 fb⁻¹ at 7 TeV and is performed in five decay modes: $\gamma\gamma$, ZZ, WW, $\tau^+\tau^-$, s observed above the expected background, a local signiftions, at a mass near 125 GeV, signalling the production acted significance for a standard model Higgs boson of viations. The excess is most significant in the two decay solution, $\gamma\gamma$ and ZZ; a fit to these signals gives a mass of .) GeV. The decay to two photons indicates that the new different from one.

any contributions to the achievement of this observation.

Submitted to Physics Letters B

ett. B 716 (2012) 30-61

September 12, 2012

to the memory of our colleagues who worked on CMS but have since passed away.

We have a discovery !!!

"We have now found the missing cornerstone of particle physics. We have a discovery. We have observed a new particle that is consistent with a Higgs boson."

- Rolf Heuer CERN Director

"It is an extraordinary achievement for the lab, and I am glad that it happened in my lifetime." – Peter Higgs

It is a historic milestone, but only the beginning.....

NEWS about the Higgs Boson (2012.7.4)

HOME PAGE TODAY'S PAPER VIDEO MOST POPULAR	U.S. Edition 🔻	BBC	News	Sport	Weather	Travel	Future
The New York Times	Science	NEWS SCIENCE	E & E	VVIRC		ΝT	
WORLD U.S. N.Y. / REGION BUSINESS TECHN	The Higgs boson disc	overy is another	Mid-	East US &	Canada Busir	iess Health	Sci/Environme
Physicists Find Elusive Part	giant leap for human The Cern discovery of the Higgs pa man on the moon – something all h	kind article is up there with putting numanity can be proud of	g	BBC BRASIL	BBC TIÉNG VIỆT 27K	BBC INDONESIA	ВВС Русская служба
	Themis Bowcock guardian.co.uk, Wednesday 4 Ju Jump to comments ()	ıly 2012 12.45 BST	ic	le di	scove	У	
Scientists in Geneva on Wednesday applauded the discovery By DENNIS OVERBYE Published: July 4, 2012 1 2 122 Comments							
	Scientists gather at Cern. Formal confirmatio expected to follow in the next few months. Ph	n of the Higgs boson discovery is otograph: Denis Balibouse/Reuters					

September 12, 2012

Prize for Higgs Mechanism

J. J. Sakurai Prize for Theoretical Particle Physics (2011)

Peter W. Higgs Phys. Lett. 12 (1964.9.15) 132 PRL 13 (1964.10.19) 508 F. Englert, R. Brout PRL 13 (1964.8.31) 321

G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, PRL 13 (1964.11.16) 585

Thank You ! 谢谢大家 !

P-value

A p-value (shaded green area) is the probability of an observed (or more extreme) result arising by chance

Standard Deviation

What's Next ?

We have now discovered a Higgs-like new particle at 126 GeV

- Only observed in bosonic final states so far, its decay to fermonic final states has yet to be established;
- The overall production rate appears to be consistent with the Standard Model expectation, but is the higher than expected $H \rightarrow \gamma \gamma$ rate a statistical fluctuation? Or something new in the loop?

Some current activities:

- Complete the analyses in $H \rightarrow \tau \tau$ and $H \rightarrow bb$ final states (Kracow?);
- Observe the particle in the VBF production mode Separate ggF and VBF processes, coupling measurements;
- Measurements of the particle properties: mass, spin and CP, ...
- Improve the precision of the rate measurements;
- Continue the search for other Higgs-like particles

Next Step

Higgs has two types of coupling:

- To gauge bosons;
- Yukawa coupling to fermions

Isolating the two couplings through the study of both production and decay processes

- "gauge" coupling
- Yukawa coupling

Higgs Spin and Parity

$H \rightarrow ZZ^* \rightarrow 4l$ final state is ideal for Higgs property measurement thanks to

full reconstruction, good resolution, low background

With 30 fb⁻¹, expect a ~3 σ separation between 0⁺ and 0⁻.

Combined Results from ATLAS

The best estimate of the mass: m = 126.0 ± 0.4(stat) ± 0.4(sys) GeV

Higgs \rightarrow WW* $\rightarrow \ell \nu \ell \nu$

 $\sigma(H \rightarrow WW^* \rightarrow \ell \nu \ell \nu) \approx 220 \text{ fb}$ (8 TeV, m_H=125 GeV)

 \Rightarrow ~2300 events in 2011+2012 samples

Main background:

WW, $t\bar{t}$, W/Z+jets, WZ/ZZ/W γ ,...

September 12, 2012

The SM WW is said to be "irreducible"

However, WW from the scalar Higgs is expected to have different kinematics

The spin correlation leads to a smaller average opening angle between the two leptons

Search for Higgs boson

60

Higgs \rightarrow WW* $\rightarrow \ell \nu \ell \nu$

$$\begin{array}{ll} \underline{\textbf{0-jet selections}} & -p_T^{\ell\ell} > 30 \text{ GeV}; \\ & -m_{\ell\ell} < 50 \text{ GeV}; \\ & -\Delta\phi_{\ell\ell} < 1.8 \end{array}$$

The transverse mass as the final discriminant

$$m_T = \sqrt{\left(E_T^{\ell\ell} + E_T^{\text{miss}}\right)^2 - \left(\vec{p}_T^{\ell\ell} + \vec{E}_T^{\text{miss}}\right)^2}$$

Fit mT to improve sensitivity

125 GeV: $0.75m_H < m_T < m_H$ (illustration only)

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
H+0-jet	20 ± 4	101 ± 13	12 ± 3	8 ± 2	3.4 ± 1.5	1.9 ± 1.3	15 ± 7	142 ± 16	185
H+ 1-jet	5 ± 2	12 ± 5	1.9 ± 1.1	6 ± 2	3.7 ± 1.6	0.1 ± 0.1	2 ± 1	26 ± 6	38
H+ 2-jet	0.34 ± 0.07	0.10 ± 0.14	0.10 ± 0.10	0.15 ± 0.10	-	-	-	0.35 ± 0.18	0

Significant excess over estimated background in both 0-jet and 1-jet channels !

September 12, 2012

Higgs \rightarrow WW* $\rightarrow \ell \nu \ell \nu$

Combining with the published 2011 results (http://arxiv.org/abs/1206.0756)

September 12, 2012

Higgs Search Overview

High resolution channels: clean signature, full reconstruction, good mass resolution. updated with 2012 data for the July 4th seminar.

Channel	Mass range (GeV)	Key detector requirements	Main backgrounds
Η→γγ	110-150	photon	γγ, γj, jj
H→ZZ→4I	110-600	lepton	ZZ, Z+jets, top
H→bb (WH/ZH)	110-130	jets, b-tagging	W/Z+jets, top
Η→ττ (ΙΙ, Ιτ _h , τ _h τ _h)	100-150	lepton, jets, ETmiss	Z+jets, jets
H→WW→lvlv	110-600	lepton, jets, ETmiss, b-veto	WW, W/Z+jets, top, Wγ
H→WW→lvqq	300-600	lepton, jets, ETmiss, b-veto	W+jets, jets
H→ZZ→llvv	200-600	lepton, ETmiss	Z+jets, ZZ, top
H→ZZ→llqq	200-600	lepton, jets, ETmiss, b-veto	Z+jets, ZZ, top

Low resolution channels: poor mass resolution, strong dependence on jet and ETmiss performance, only $WW^* \rightarrow IvIv$ updated with 2012 data.

	ATLAS	CMS
TRACKER	Si pixels + strips TRT \rightarrow particle identification $\sigma/p_T \sim 5 \times 10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon σ/E ~ 10%/_E uniform longitudinal segmentation	PbWO ₄ crystals σ/E ~ 2-5%/√E no longitudinal segmentation
HAD CALO	Fe-scint. + Cu-liquid argon (≥ 10 λ) σ/Ε ~ 50%/√Ε ⊕ 0.03	Brass-scint. (≥ 5.8 λ + catcher) σ/Ε ~ 100%/√Ε ⊕ 0.05
MUON	MDT, CSC, RPC, TGC σ/p _T ~ 7 % at 1 TeV standalone	DT, CSC, RPC $\sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

Higgs Boson Decays

The decay properties of the Higgs boson are fixed, if the mass is known:

 $\Gamma(H \to f\bar{f}) = N_C \frac{G_F}{4\sqrt{2\pi}} m_f^2(M_H^2) M_H$

$$\Gamma(H \to VV) = \delta_V \frac{G_F}{16\sqrt{2\pi}} M_H^3 (1 - 4x + 12x^2) \beta_V$$

where: $\delta_Z=1, \delta_W=2, \ x=M_V^2/M_V^2, \ eta=$ velocity

$$\Gamma(H \to gg) = \frac{G_F \ \alpha_s^2(M_H^2)}{36\sqrt{2}\pi^3} \ M_H^3 \left[1 + \left(\frac{95}{4} - \frac{7N_I}{6}\right) \frac{\alpha_s}{\pi} \right]$$

$$\Gamma(H \to \gamma\gamma) = \frac{G_F \ \alpha^2}{128\sqrt{2}\pi^3} \ M_H^3 \ \left[\frac{4}{3}N_C e_t^2 - 7 \right]^2$$

Higgs Boson:

- it couples to particlesproportional to their masses
- decays preferentially in the heaviest particles kinematically allowed

Yukawa Couplings

• Higgs couples to fermion mass

$$L_{Yukawa} = -\lambda_d Q_L \Phi d_R + hc$$
$$= -\lambda_d \left(\frac{\nu + h}{\sqrt{2}}\right) \overline{d} dh \rightarrow -\frac{m_d}{\nu} \overline{d} dh$$

- $m_f = \lambda_f v / \sqrt{2}$
- Yukawa ffh coupling doesn't vanish for v=0
- Measuring Yukawa coupling doesn't prove VEV exists!

Gauge Higgs Couplings

• Higgs couples to gauge boson masses

$$(D_{\mu}\Phi)^{+}(D_{\mu}\Phi) \rightarrow \left(\frac{gv}{2}\right)^{2}W^{+\mu}W_{\mu}^{-}\left(1+\frac{h}{v}\right)+....$$

• WWh coupling vanishes for v=0! Tests the connection of M_w to non-zero VEV

Selected $H \rightarrow ZZ^* \rightarrow 4l$ Candidates

 \Box Observed candidates with M₄₁ between 120 and 130 GeV

Total background: ZZ* Signal $m_{H} = 125 \text{ GeV}$ Z+jets and ttbar 08 m34 [GeV] + 108⁴ 108 a.u 45 n.a m_u=125 GeV Tot. bkg (120<m_<130 GeV) ATLAS ATLAS Data (120<m₄<130 GeV) Data (120<m_<130 GeV) $H \rightarrow ZZ^{(*)} \rightarrow 4I$ $H \rightarrow ZZ^{(*)} \rightarrow 4I$ m₃₄ $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.8 \text{ fb}^{-1}$ $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.8 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}: \int Ldt = 5.8 \text{ fb}^{-1}$ √s = 8 TeV:∫Ldt = 5.8 fb⁻¹ m₁₂ [GeV] m₁₂ [GeV]

$H \rightarrow ZZ^* \rightarrow$ eeee Candidate

\square M_{4e} = 124.6 GeV, M₁₂ = 70.6 GeV, M₃₄ = 44.7 GeV

September 12, 2012

$H \rightarrow ZZ^* \rightarrow 2e2\mu$ Candidate

\square M_{2e2µ} = 123.9 GeV, M₁₂ = 87.9 GeV, M₃₄ = 19.6 GeV

70

BDT Training and Test Results

 \Box About 28K JHU H(0+) and 28K H(0-) events, one half for BDT training and another half and SM ZZ for test.

1/N) dN/ dx

Selection Cuts:

- 50 GeV < MZ1 < 106 GeV
- 17.5 GeV < MZ2 < 115 GeV
- Lepton pT: pT1 > 20 GeV, pT2 > 15 GeV, pT3 > 10 GeV, pT4 > 7 GeV
- |Eta| < 2.5
- dR > 0.1 (0.2) for same (different) flavor di-lepton
- $-120 \text{ GeV} < M_{ZZ} < 130 \text{ GeV}$

Log-likelihood Ratio and Separation Power

Using Binned Log-likelihood Ratio method to determine the separation power between Higgs 0+ and 0 1M MC trials based on Poisson statistics
 Log-likelihood Ratio distributions
 Expected significance vs int. luminosity

Int. Luminosity (fb ⁻¹)	Significance (no ZZ, BDT)	Significance (with ZZ, BDT)
10 ($N_s = 6, N_b = 5.5$)	1.97 σ	1.45 σ
20 (N _s =12, N _b =11)	2.74 σ	1.98 σ
$30 (N_s = 18, N_b = 16.5)$	3.36 σ	2.40 σ
40 (N_s =24, N_b =22)	3.85 σ	2.77 σ
50 (N_s =30, N_b =27.5)	4.26 σ	3.10 σ

Discovery of SM Particles

- □ 1897 e discovery, by J.J. Thompson (cathode ray tube, UK)
- □ 1919 proton, Ernest Rutherford (UK)
- □ 1930 neutron, James Chadwick (UK)
- \Box 1936 μ , Carl D. Anderson at Caltech
- \Box 1947 strange quark(K+=usbar, K-=subar)
- \Box 1956 v_e discovery (nuclear reactor)
- \Box 1962 ν_{u} discovery at BNL
- □ 1962 v_{μ} discovery at BNL □ 1968 u and d quark (quark model) □ 1974 c quark (BNL, SLAC, J/ψ=ccbar)
- \Box 1977 tau discovery (SLAC)
- □ 1977 b quark (Upsilon, FNAL)
- □ 1979 gluon (DESY)
- □ 1983 W and Z (CERN)
- □ 1995 top quark
- \Box 2000 v_{τ} discovery (Fermilab)

Elementary Particles

Three Families of Matter