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Abstract

Single W boson production in electron-positron collisions is studied with the L3 detector at LEP. The data sample
y1'collected at a centre-of-mass energy of s s188.7 GeV corresponds to an integrated luminosity of 176.4 pb . Events with

a single energetic lepton or two acoplanar hadronic jets are selected. Within phase-space cuts, the total cross-section is
measured to be 0.53"0.12"0.03 pb, consistent with the Standard Model expectation. Including our single W boson results

'obtained at lower s , the WWg gauge couplings k and l are determined to be k s0.93"0.16"0.09 andg g g

l sy0.31q0.68 "0.13. q 2000 Elsevier Science B.V. All rights reserved.g y0.19

1. Introduction

Precise measurements of trilinear gauge boson
couplings constitute a crucial test of the Standard
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w xModel of electroweak interactions 1,2 . The studies
of single W production8

eqey
™eqn Wy 1Ž .e

w xby the LEP experiments 3–6 demonstrated that this
process provides one of the best experimental grounds
for precision measurements of the electromagnetic
gauge couplings of the W boson. The cross-section

Ž .of process 1 depends only on the k and l gaugeg g

w xcoupling parameters 7 which are related to the
Ž Ž ..magnetic dipole moment, m s er 2 mW W

1qk ql , and the electric quadrupole moment,Ž .g g

Ž 2 .Q s yerm k yl , of the W boson. AnyŽ .W W g g

deviation from the Standard Model predictions k sg

1 and l s0 would indicate that the W boson has ang

internal structure.

8 The charge conjugate reactions are understood to be included
throughout the paper.
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A specific feature of this reaction is a final state
positron produced at very low polar angle and there-
fore not detected. Thus the signature of this process
is a single energetic lepton, if the Wy boson decays
into lepton and anti-neutrino, or two hadronic jets
and large transverse momentum imbalance in case of
hadronic Wy decay.

In this article we report on the measurement of
the cross-section of single W boson production at a

'centre-of-mass energy of s s188.7 GeV, denoted
'hereafter as s s189 GeV. Combining these results

with those on single W boson production obtained at
' w xlower s 4 , we derive significantly more precise

values for the gauge couplings k and l .g g

2. Data and Monte Carlo samples

w xThe data were collected by the L3 detector 8 at
LEP in 1998 with an integrated luminosity of
176.4 pby1.

Xq y qFor signal studies samples of e e ™e n f fe
w xevents are generated using both the GRC4F 9 and

w xthe EXCALIBUR 10 Monte Carlo generators. For
the background studies the following Monte Carlo

w x Ž q y q yprograms are used: KORALW 11 e e ™W W
. w x Ž q y q yŽ .™ ffff , KORALZ 12 e e ™ m m g ,

q yŽ .. w x w xt t g , BHAGENE3 13 and BHWIDE 14 for
Ž q y q yŽ ..large angle Bhabha scattering e e ™e e g ,

w xTEEGG 15 for small angle Bhabha scattering
q y q y q yŽ . w x Ž Ž ..e e ™e e g , PYTHIA 16 e e ™q q g ,

w x w xDIAG36 17 and PHOJET 18 for leptonic and
hadronic two-photon processes, respectively, and
EXCALIBUR and GRC4F for other 4-fermion final
states.

The Monte Carlo events are simulated in the L3
w xdetector using the GEANT 3.15 program 19 , which

takes into account the effects of energy loss, multiple
scattering and showering in the detector. The

w xGHEISHA program 20 is used to simulate hadronic
interactions in the detector.

3. Signal definition

The signal definition used here is unchanged with
w xrespect to our previous publications 3,4 . The signal

Xq y qis defined as e e ™e n f f events that satisfy thee

following phase-space cuts:

< <qcosu )0.997e

Xmin E , E )15 GeVŽ .f f

q y< <ycosu -0.75 for e n e n events only, 2Ž .e e e

where u q is the polar angle of the outgoing positron,e
Xand E and E are the fermion energies. The finalf f

Xq y qstates e e ™e n f f that do not satisfy these con-e

ditions are considered as background; they consist
mostly of the reaction eqey

™WqWy. In the case
q yof the e n e n final state the additional angulare e

cut reduces contributions from processes where the
n n pair originates from the decay of a Z boson.e e

Ž .Inside the phase-space region 2 , single W pro-
< <qduction dominates since it peaks strongly at cosue

;1. On average it accounts for 90% of all events in
this region, the remaining 10% being mostly non-res-
onant final states. The purity depends slightly on the

X yflavour of the f f pair from W decays. For the
q ye n e n final state, the purity is 75%.e e

For comparison with theory, the cross-sections for
this signal definition are calculated with a statistical
precision from 0.2% to 1.0% using the Monte Carlo
generators GRC4F and EXCALIBUR. The main dif-
ference between the two generators is the approxima-
tion of massless fermions used in EXCALIBUR. The
reduction of theoretical uncertainties on predictions
for single W production is subject to ongoing theo-

w xretical efforts 21 . With respect to this discussion,
we estimate the theoretical uncertainty on the calcu-
lated cross-section for single W production to be of
the order of 7%. This includes the effect of using a
smaller electromagnetic coupling accounting for the
low momentum transfer of the photon in single W
production and taking into account QED radiative
corrections expected for such a t-channel process.
Rescaling with respect to a smaller electromagnetic
coupling constant would lower the cross section by
7% to 10%, whereas replacing the energy scale used
in the structure function approach to calculate QED
corrections with the correct physical scale is ex-
pected to increase the cross-section by about 5%.
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4. Analysis

All decay modes of the W boson are considered,
leading to the following experimental signatures:
events with two hadronic jets and large transverse
momentum imbalance and events with single ener-
getic electrons, muons and taus. In the following,
efficiencies are quoted with respect to the phase-space

Ž .cuts 2 , with errors due to Monte Carlo statistics.

4.1. Hadronic final states

The selection of candidates for the hadronic decay
XyW ™q q of single W boson production is based on

the following requirements: two acoplanar hadronic
jets, no leptons, and large transverse momentum
imbalance.

High multiplicity hadronic events with at least
five charged tracks are selected with an energy depo-
sition in the electromagnetic calorimeter greater than
10 GeV and large total visible energy, E )60 GeV.vis

All calorimetric clusters in the event are forced to
two hadronic jets using the DURHAM jet finding

w xalgorithm 22 . The invariant mass of the jet-jet
system must be in the range 40 GeV-M -vis

110 GeV. The energy E in the forward-backwardFB

luminosity calorimeters, covering the angular range
0.025 rad-u-0.151 rad, where u is measured with
respect to the incoming electron or positron, is re-
quired to be smaller than 65 GeV. These cuts reduce
contributions from the purely leptonic final states

q y q yŽ . q yŽ . q yŽ .e e ™e e g , m m g , t t g and hadronic
two-photon interactions while keeping a significant
fraction of hadronic events from the processes eqey

q y q y q yŽ .™qq g , e e ™W W and e e ™ZZ.
To reject events from the two-fermion production

q y Ž .process e e ™qq g , the missing transverse mo-
mentum must exceed 15 GeV. The missing momen-
tum vector must be at least 0.30 rad away from the
beam axis and the energy in the "0.22 rad azimuthal
sector around its direction must be below 10 GeV. In
addition, the opening angle between the two jets in
the plane perpendicular to the beam axis must be
smaller than 3.0 rad.

Events containing identified electrons, muons or
photons with energy greater than 20 GeV are rejected
in order to suppress the remaining background from
eqey
™WqWy events where one of the W bosons

decays into leptons. In order to remove part of the
Xqremaining t n q q final states with the t leptont

decaying hadronically, the event is forced to a three-
jet topology using the DURHAM algorithm. The
solid angle, V , defined by the directions of these jets
is required to be smaller than 5.5 sr.

At 189 GeV centre-of-mass energy, the produc-
tion of two on-mass-shell Z bosons is a source of an
additional background. A decay of one Z into neutri-
nos accompanied by a hadronic decay of the other Z
leads to an event signature close to that of the signal

Ž .process 1 . To suppress this background, we make
use of the fact that the Z bosons produced in pairs
are close to the kinematic threshold and therefore
have low momenta. Thus we ask the velocity of the
detected hadronic system, b , calculated as the ratio
of the missing momentum to the visible energy to be
greater than 0.35.

A total of 216 events are observed in the data,
with 35.9 events expected from the signal according
to the EXCALIBUR Monte Carlo prediction and 179
from the background sources distributed as follows:

Xq y qW W production and non resonant e n q q finale
Ž . Ž .states 166.2 events , ZZ production 7 events ,

Ž .two-fermion final state processes 4.2 events and
Ž .two-photon interactions 1.5 events . The contribu-

tions to the background from other processes are
found to be negligible. The number of observed
events is in good agreement with the expectation.
The signal selection efficiency is determined to be
Ž .50.5"0.7 % using the EXCALIBUR Monte Carlo

Ž .and 51.8"1.3 % using GRC4F Monte Carlo.
In order to differentiate further between the signal

and the WqWy background, a discriminant variable
NN is constructed using a neural network. Nineout

variables are combined in a feed-forward neural
w xnetwork 23 , with one hidden layer and one output

node. The input to the neural net includes the sphe-
rocity of the event, the invariant mass of the two jets,
the masses of the two jets, the velocity b of the
hadronic system, the solid angle V , the resolution
parameters y and y of the JADE jet finding23 34

w xalgorithm 24 for which the number of jets in the
event changes from two to three and three to four,
respectively, and the ratio of the mass to the energy
of the least energetic jet after forcing the event to
three jets. As an example, the distribution of the
solid angle V for the selected events is shown in
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Ž .Fig. 1 a . The use of the neural network increases the
signal fraction in the selected sample to approxi-
mately 60% for large neural network output values,

Ž .as shown in Fig. 1 b .
Ž .The cross-section of the process 1 for hadronic

decays of the W boson is determined by a binned
log-likelihood fit to the neural network output distri-

Ž .bution of Fig. 1 b , assuming Poisson statistics. The
background contributions are fixed to the corre-
sponding Standard Model Monte Carlo predictions.

Ž . Ž .Fig. 1. Distribution of a the 3-jet solid angle V and b the
neural network output for the selected hadronic events. The points
are data, the hatched histograms represent the background and the
open histograms show the expected signal from en qq final statese

as predicted by the EXCALIBUR Monte Carlo.

The fitted cross-section of the hadron channel is
found to be:

Ž q y .s e e ™en qq s0.41"0.11 pb .e

A similar result is obtained if the GRC4F Monte
Carlo is used for the simulation of the signal. This
result has to be compared with the expected signal
cross-section of 0.40 pb predicted by EXCALIBUR
and 0.38 pb predicted by GRC4F.

As a check of the analysis procedure, a fit of the
total WqWy cross-section, keeping the single W
contribution fixed to the EXCALIBUR Monte Carlo
prediction, gives the value 16.9"1.5 pb in good
agreement with the Standard Model expectation of
16.7 pb predicted by KORALW. The result of the fit
with both WqWy and single W production cross-
sections as free parameters is in good agreement
with the results above.

4.2. Leptonic final states

The distinct feature of the process eqey
™

yq y ye n W , W ™ ll n is a high energy lepton frome ll

W decay with no other significant activity in the
detector.

ŽEvents with one charged lepton electron, muon
.or tau with an energy of at least 15 GeV are se-

lected. The lepton identification is based on the
energy distribution in the electromagnetic and hadron
calorimeters associated with the trajectory of charged
particles. The total energy, E , is calculated as thevis

sum of the lepton energy, E , measured as discussedll

below, and the energies of all neutral calorimetric
clusters in the event. No other charged particle activ-
ity is allowed. The ratio E rE is required toll vis

exceed 0.92 in order to suppress background from
q y q yŽ .two-fermion production e e ™ ll ll g . In addi-

tion, the energy in the "0.22 rad azimuthal angle
sector along the missing energy direction must be

Ž .below 1 GeV 0.2 GeV for muons . The energy in the
forward-backward luminosity calorimeters, E ,FB

must be less than 70 GeV. The accepted background
is dominated by two-fermion production processes,
especially radiative Bhabha scattering in the case of

q ythe single electron final state, e n e n . Moreover,e e

significant contributions are due to 4-fermion final
states that include two neutrinos and fall outside the

Ž .signal definition 2 .
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4.2.1. Single electron final states
Electrons are identified as clusters in the electro-

magnetic calorimeter consistent with an electromag-
netic shower shape matched in azimuthal angle with
a track reconstructed in the central tracker. For the
single electron final states, the electron energy, E ,e

measured in the electromagnetic calorimeter, must
exceed 20 GeV and the polar angle u must satisfye

< <the condition cosu -0.7. This requirement reducese

the contribution from Bhabha and Compton scatter-
q y q ying and from the process e e ™e e nn where the

eqey pair originates from a low-mass virtual pho-
q y q yŽ .ton. The e e ™e e g events constitute the

dominant contribution to the selected sample. The
requirements E rE )0.92 and E -70 GeV re-e vis FB

duce significantly this contribution. The acoplanarity
angle between the direction of the electron and the

Ž .most energetic neutral cluster if any must be greater
than 0.14 rad.

A total of 8 events are observed with 11.9 ex-
pected from the Standard Model including 7.9 events
expected from the signal as predicted by the EX-
CALIBUR Monte Carlo. The energy spectrum of the

Ž .selected events is presented in Fig. 2 a .
The trigger efficiency is found to be 92% from a

control data sample. The signal selection efficiency
Ž .is estimated to be 80"2 % using the EXCALIBUR

Ž .Monte Carlo program and 78"3 % using GRC4F.
The major sources of the efficiency loss are due to

< <the requirements cosu -0.7 and E )20 GeV. Ae e

Ž . Ž . Ž .Fig. 2. The energy spectra of the selected a single electron, b single muon, and c single tau candidates. The sum of the different lepton
Ž .energy spectra is shown in d . The points are data, the hatched histograms correspond to the background contribution. The open histograms

show the expected signal from en lln final states as predicted by the EXCALIBUR Monte Carlo.e ll
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binned log-likelihood fit to the electron energy spec-
trum results in:

s eqey
™en en s0.021q0 .026 pb ,Ž .e e y0.020

to be compared with the signal cross-section of
0.056 pb predicted by EXCALIBUR and 0.054 pb
predicted by GRC4F.

4.2.2. Single muon final states
Single muon final states are selected as events

containing one isolated muon, identified as a recon-
structed track in the muon chambers and the central
tracker. The muon energy, E , measured in them

muon chambers and in the central tracker, is required
to exceed 15 GeV. The fiducial volume for this

< <analysis is defined to be cosu -0.85. This latterm

requirement avoids significant decrease of the trigger
efficiency for single muons in the angular region
< <cosu )0.85. Within the acceptance, the triggerm

efficiency exceeds 96%. The total calorimetric en-
ergy not associated to the muon must not exceed
3 GeV. The rejection of background from cosmic
muons is based on the radial distance of closest
approach of the muon to the beam line and a match
in azimuthal angle of the muon chamber track with a
track reconstructed in the central tracker.

A total of 10 events are observed with 9.8 ex-
pected from Standard Model processes including 7.5
events from the signal. The energy spectrum of the
selected single muon candidates is presented in Fig.
Ž . Ž .2 b . A signal efficiency of 61"2 % is estimated

using the EXCALIBUR Monte Carlo program and
Ž .56"2 % using GRC4F. The main source of the
efficiency loss is due to the geometrical acceptance
of the muon chambers. A binned log-likelihood fit to
the muon energy spectrum results in:

s eqey
™en mn s0.070q0 .034 pb .Ž .e m y0.027

The expected signal cross-section is 0.060 pb accord-
ing to EXCALIBUR and 0.059 pb according to
GRC4F.

4.2.3. Single tau final states
Single tau final states are selected as events con-

taining one low-multiplicity hadronic jet. The calori-

metric energy associated with the t jet, E , mustt

exceed 15 GeV. The number of tracks reconstructed
in the central tracking system must be either 1 or 3.

A total of 4 events are observed with 3.6 expected
from the Standard Model processes including 2.1
events from the signal. The energy spectrum of
selected single tau candidates is presented in Fig.
Ž . Ž2 c . The signal efficiency is estimated to be 26"
. Ž .2 % using EXCALIBUR and 29 " 2 % using

GRC4F. The trigger efficiency was studied and found
to be in excess of 98%. A binned log-likelihood fit to
the tau energy spectrum yields:

s eqey
™en tn s0.066q0 .073 pb .Ž .e t y0.050

The predictions for the signal cross-section are
0.060 pb and 0.059 pb according to EXCALIBUR
and GRC4F, respectively.

5. Systematic uncertainties

In case of the hadronic decay of the single W, the
differences of the EXCALIBUR and GRC4F signal
modelling are taken into account in the systematic
uncertainty of the cross-section measurement. This
systematic uncertainty is found to be approximately
3%. In addition, the parameters describing the neural
network structure are varied and the analysis is
repeated to allow an estimation of the uncertainty
due to the choice of the network, yielding a contribu-
tion of 3%. Compared to this, detector effects, stud-
ied by smearing and shifting the kinematic variables
that are fed into the network within the experimental
resolution, have a negligible impact on the result.

In the lepton channel, the dominant systematic
uncertainty of approximately 4% arises from the
signal modelling comparing the signal efficiencies
estimated using EXCALIBUR and GRC4F. The un-
certainty due to the identification of leptons is stud-
ied using control data samples of two-fermion pro-
duction and is found to be less than 1.5%.

The uncertainty due to the Monte Carlo signal
statistics ranges from 1% to 3% on the cross-section
depending on the decay channel. The systematic
uncertainty on the expected number of background
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events is essentially due to the limited Monte Carlo
statistics, with smaller contributions from the uncer-
tainties on the cross-sections and the selection effi-
ciencies for the background processes. The overall
uncertainty on the total number of background events
ranges from 3% to 4% in the individual channels.
These uncertainties are uncorrelated among individ-
ual channels and different centre-of-mass energies
and have negligible impact on the final results. Tak-
ing into account all the contributions, the systematic
uncertainty of the cross-section measurement
amounts to 5% for the hadronic decay channel and
6% overall.

6. Results

6.1. Total cross-section

The total cross-section of single W production is
determined from a binned likelihood fit to the distri-
butions of the neural network output presented in

Ž .Fig. 1 b and the lepton energy spectra shown in
Ž . Ž .Figs. 2 a – c . The sum of the different lepton en-

Ž .ergy distributions is presented in Fig. 2 d . The
background shapes and normalisations are fixed to
the Monte Carlo prediction. The fitted signal cross-

Ž q y .section, s e e ™en W , corresponds to that of thee

process eqey
™en ff, where ff denotes a sum of alle

ll n and qq final states satisfying the phase-spacell
Ž .conditions 2 . The total single W boson cross-sec-

'tion at s s189 GeV is then determined to be:

s eqey
™en W s0.53"0.12"0.03 pb ,Ž .e

where the first error is statistical and the second
systematic. The measured cross-section value is con-
sistent with the Standard Model prediction of 0.57 pb
calculated with EXCALIBUR and 0.56 pb calculated
with GRC4F. The dependence of the cross-section
on the centre-of-mass energy agrees well with the
Monte Carlo predictions as shown in Fig. 3, includ-
ing our previous measurements at centre-of-mass

w xenergies between 130 GeV and 183 GeV 4 .

6.2. WWg gauge couplings

The electromagnetic gauge couplings k and lg g

describing the WWg vertex are determined from a

Fig. 3. The measured cross-section of single W production within
our phase-space cuts as a function of the centre-of-mass energy.
The solid and dashed lines show predictions of the GRC4F and
EXCALIBUR Monte Carlo programs, respectively. The estimated
theoretical uncertainty of "7% is indicated by the band.

binned maximum-likelihood fit similar to the one
used for the cross section determination. In the fit
each Monte Carlo event is assigned a weight that
depends on the generated 4-fermion event kinematics
and the values of the gauge couplings k and l .g g

The dependence of the background from WqWy

production on the gauge couplings is also taken into
account. The weight is calculated using the matrix
element as implemented in EXCALIBUR, imposing
constraints on the triple gauge boson couplings kZ

Ž . Ž .and l arising from the SU 2 =U 1 gauge invari-Z
Z 2 Ž .ance: k sg y tan u k y1 and l sl . TheseZ 1 w g Z g

constraints affect only the background contributions,
as the signal process depends on l and k only.g g

The general analysis of the remaining C- and P-con-
serving couplings, g Z, l and k , can only be done1 g g

with full consideration of the WqWy production. In
the present analysis we fix the weak charge of the W
bosons to its Standard Model value, g Z s1, and1

focus on the electromagnetic properties of W bosons.
The dependence of the coupling determination on

the total cross-section for single W boson production
is tested repeating the likelihood fit with a "7%
variation of the signal cross-section. The correspond-
ing systematic uncertainty is "0.04 for k andg

"0.02 for l . Comparing the signal description ofg
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the two Monte Carlo Generators, EXCALIBUR and
GRC4F, shows an additional systematic uncertainty
of "0.05 and "0.06 on k and l , respectively.g g

The agreement between the two generators for vari-
ous anomalous couplings is checked. No coupling-
dependence of the ratio of the two cross-section
predictions was found.

In addition, the cross-section of the background
contributions coming from WqWy and ZZ produc-
tion are varied to allow an estimation of the system-
atic uncertainty. The influence of these uncertainties
on the coupling determination is found to be less
than "0.02.

The estimated systematic uncertainty is assumed
to be Gaussian and fully correlated between individ-
ual channels. The systematic uncertainty in the
cross-section determination is taken into account by
convolution of the likelihood function with a Gauss-
ian in the fit.

For the fit to the couplings, we combine the single
'W data at s s189 GeV presented here with our

w xsingle W data already published 4 . Single W boson
production is particularly sensitive to the gauge cou-
pling k . Thus, this coupling is determined in a fitg

fixing l s0 to be:g

k sq0.96q0 .15 "0.09 ,g y0.17

where the first error is statistical and the second
systematic. Fixing k s1 and performing a fit for lg g

yields:

l sy0.26q0 .53 "0.13 .g y0.19

Varying both couplings l and k freely in the fitg g

yields:

k sq0.93"0.16"0.09g

l sy0.31q0 .68 "0.13 ,g y0.19

with a correlation coefficient of q37%. The 68%
and 95% confidence level contours on k and l areg g

shown in Fig. 4. The results are consistent with the
absence of anomalous contributions to WWg cou-
plings. The limits on k and l at 95% confidenceg g

level are:

0.56-k -1.29 for l s0g g

y0.67-l -0.59 for k s1 .g g

Fig. 4. The contours corresponding to 68% and 95% confidence
level in the k y l plane. The point indicates the global mini-g g

mum from the 2-parameter fit, to be compared with the Standard
Model prediction indicated by the star.

These results represent a major improvement in the
accuracy on the triple gauge boson couplings k andg

l compared to our previous publications on singleg

w xW boson production 3,4 . They are complementary
to measurements based on WqWy production at

w xLEP 6,25 or determined at the Tevatron pp collider
w x26 .
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