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Abstract

The efficacy of particle identification is compared using artificial neutral networks and boosted decision trees. The

comparison is performed in the context of the MiniBooNE, an experiment at Fermilab searching for neutrino

oscillations. Based on studies of Monte Carlo samples of simulated data, particle identification with boosting

algorithms has better performance than that with artificial neural networks for the MiniBooNE experiment. Although

the tests in this paper were for one experiment, it is expected that boosting algorithms will find wide application in

physics.
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1. Introduction

The artificial neural network (ANN) technique
has been widely used in data analysis of High
Energy Physics experiments in the last decade. The
use of the ANN technique usually gives better
e front matter r 2005 Elsevier B.V. All rights reserve
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results than the traditional simple-cut techniques.
In this paper, another data classification techni-
que, boosting, is introduced for data analysis in the
MiniBooNE experiment [1] at Fermi National
Accelerator Laboratory. The MiniBooNE experi-
ment is designed to confirm or refute the evidence
for nm ! ne oscillations at Dm2 ’ 1 eV2=c4 found
by the LSND experiment [2]. It is a crucial
experiment which will imply new physics beyond
d.
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the standard model if the LSND signal is confirmed.
Based on our studies, particle identification (PID)
with the boosting algorithm is 20–80% better than
that with our standard ANN PID technique. The
boosting performance relative to that of ANN
depends on the Monte Carlo samples and PID
variables. Although the boosting algorithm was
tested in only one experiment, it’s anticipated to
have wide application in physics, especially in data
analysis of particle physics experiments for signal
and background events separation.
The boosting algorithm is one of the most

powerful learning techniques introduced during
the past decade. The boosting algorithm is a
procedure that combines many ‘‘weak’’ classifiers
to achieve a final powerful classifier. Boosting can
be applied to any classification method. In this
paper, it is applied to decision trees. Two boosting
algorithms, AdaBoost [3] and �-Boost [4], are
considered. A brief description of boosting algo-
rithms is given in the next section. Our results are
presented in Section 3, while we summarize our
conclusions in Section 4.
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Fig. 1. Schematic of a decision tree. S for signal, B for

background. Terminal nodes (called leaves) are shown in boxes.

If signal events are dominant in one leaf, then this leaf is signal

leaf; otherwise, background leaf.
2. Brief description of boosting

2.1. Decision tree

Suppose one is trying to divide events into signal
and background and suppose Monte Carlo sam-
ples of each are available. Divide each Monte
Carlo sample into two parts. The first part, the
training sample, will be used to train the decision
tree, and the second part, the test sample, to test
the final classifier after training.
For each event, suppose there are a number of

PID variables useful for distinguishing between
signal and background. Firstly, for each PID
variable, order the events by the value of the
variable. Then pick variable one and for each
event value see what happens if the training sample
is split into two parts, left and right, depending on
the value of that variable. Pick the splitting value
which gives the best separation into one side
having mostly signal and the other mostly back-
ground. Then repeat this for each variable in turn.
Select the variable and splitting value which gives
the best separation. Initially there was a sample of
events at a ‘‘node’’. Now there are two samples
called ‘‘branches’’. For each branch, repeat the
process, i.e., again try each value of each variable
for the events within that branch to find the best
variable and splitting point for that branch. One
keeps splitting until a given number of final
branches, called leaves, are obtained, or until each
leaf is pure signal or pure background, or has too
few events to continue. This description is a little
oversimplified. In fact at each stage one picks as
the next branch to split, the branch which will give
the best increase in the quality of the separation. A
schematic of a decision tree is shown in Fig. 1, in
which 3 variables are used for signal/background
separation: event hit multiplicity, energy, and
reconstructed radial position.
What criterion is used to define the quality of

separation between signal and background in the
split? Imagine the events are weighted with each
event having weight W i: Define the purity of the
sample in a branch by

P ¼

P
s W sP

s W s þ
P

b W b
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where
P

s is the sum over signal events and
P

b is
the sum over background events. Note that Pð1�
PÞ is 0 if the sample is pure signal or pure
background. For a given branch let

Gini ¼
Xn

i¼1

W i

 !
Pð1� PÞ

where n is the number of events on that branch.
The criterion chosen is to minimize

Ginileft son þGiniright son:

To determine the increase in quality when a node
is split into two branches, one maximizes

Criterion ¼ Ginifather �Ginileft son �Giniright son:

At the end, if a leaf has purity greater than 1
2
(or

whatever is set), then it is called a signal leaf and if
the purity is less than 1

2
; it is a background leaf.

Events are classified signal if they land on a signal
leaf and background if they land on a background
leaf. The resulting tree is a decision tree.
Decision trees have been available for some time

[5]. They are known to be powerful but unstable,
i.e., a small change in the training sample can give
a large change in the tree and the results.
There are three major measures of node

impurity used in practice: misclassification error,
the gini index and the cross-entropy. If we define p

as the proportion of the signal in a node, then the
three measures are: 1�maxðp; 1� pÞ for the
misclassification error, 2pð1� pÞ for the gini
index and �p logðpÞ � ð1� pÞ logð1� pÞ for the
cross-entropy. The three measures are similar,
but the gini index and the cross-entropy are
differentiable, and hence more amenable to
numerical optimization. In addition, the gini
index and the cross-entropy are more sensitive to
change in the node probabilities than the mis-
classification error. The gini index and the cross-
entropy are similar.

2.2. Boosting

Within the last few years a great improvement
has been made [6–8]. Start with unweighted events
and build a tree as above. If a training event is
misclassified, i.e., a signal event lands on a
background leaf or a background event lands on
a signal leaf, then the weight of that event is
increased (boosted).
A second tree is built using the new weights, no

longer equal. Again misclassified events have their
weights boosted and the procedure is repeated.
Typically, one may build 1000 or 2000 trees this
way.
A score is now assigned to an event as follows.

The event is followed through each tree in turn. If
it lands on a signal leaf it is given a score of 1 and
if it lands on a background leaf it is given a score
of �1: The renormalized sum of all the scores,
possibly weighted, is the final score of the event.
High scores mean the event is most likely signal
and low scores that it is most likely background.
By choosing a particular value of the score on
which to cut, one can select a desired fraction of
the signal or a desired ratio of signal to back-
ground. For those familiar with ANNs, the use of
this score is the same as the use of the ANN value
for a given event. For the MiniBooNE experiment,
boosting has been found to be superior to ANNs.
Statisticians and computer scientists have found
that this method of classification is very efficient
and robust. Furthermore, the amount of tuning
needed is rather modest compared with ANNs. It
works well with many PID variables. If one makes
a monotonic transformation of a variable, so that
if x14x2 then f ðx1Þ4f ðx2Þ; the boosting method
gives exactly the same results. It depends only on
the ordering according to the variable, not on the
value of the variable.
In articles on boosting within the statistics and

computer science communities, it is often recom-
mended that short trees with eight leaves or so be
used. For the MiniBooNE Monte Carlo samples it
was found that large trees with 45 leaves worked
significantly better.

2.3. Some boosting algorithms

If there are N total events in the sample, the
weight of each event is initially taken as 1=N:
Suppose that there are N tree trees and m is the
index of an individual tree. Let
�
 xi ¼ the set of PID variables for the ith event.
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�
 yi ¼ 1 if the ith event is a signal event and yi ¼

�1 if the event is a background event.

�
 wi ¼ the weight of the ith event.
Weighted Sample T (x)
�

M

TmðxiÞ ¼ 1 if the set of variables for the ith event
lands that event on a signal leaf and TmðxiÞ ¼

�1 if the set of variables for that event lands it
on a background leaf.
�

Training Sample

Weighted Sample

Weighted Sample

T1(x)

T2(x)

T3(x)

Fig. 2. Schematic of a boosting procedure.
IðyiaTmðxiÞÞ ¼ 1 if yiaTmðxiÞ and 0 if yi ¼

TmðxiÞ:

There are at least two commonly used methods for
boosting the weights of the misclassified events in
the training sample.
The first boosting method is called AdaBoost

[3]. Define for the mth tree:

errm ¼

PN
i¼1 wiIðyiaTmðxiÞÞPN

i¼1 wi

;

am ¼ b	 lnðð1� errmÞ=errmÞ:

b ¼ 1 is the value used in the standard AdaBoost
method. For the MiniBooNE Monte Carlo
samples, b ¼ 0:5 has been found to give better
results. Change the weight of each event i,
i ¼ 1; . . . ;N:

wi ! wi 	 eamIðyiaTmðxiÞÞ:

Each classifier Tm is required to be better than
random guessing with respect to the weighted
distribution upon which the classifier is
trained. Thus, errm is required to be less than
0.5, since, otherwise, the weights would be updated
in the wrong direction. Next, renormalize the
weights, wi ! wi=

PN
i¼1 wi: The score for a given

event is

TðxÞ ¼
XN tree

m¼1

amTmðxÞ

which is just the weighted sum of the scores over
the individual trees, see Fig. 2.
The second boosting method is called �-Boost

[4], or sometimes ‘‘shrinkage’’. After the mth tree,
change the weight of each event i, i ¼ 1; . . . ;N:

wi ! wie
2�IðyiaTmðxiÞÞ

where � is a constant of the order of 0.01.
Renormalize the weights, wi ! wi=

PN
i¼1 wi: The
score for a given event is

TðxÞ ¼
XN tree

m¼1

�TmðxÞ

which is the renormalized, but unweighted, sum of
the scores over individual trees.
The AdaBoost and �-Boost algorithms used in

this paper try to minimize the expectation value:
Eðe�yF ðxÞÞ; where y ¼ 1 for signal, y ¼ �1 for
background, F ðxÞ ¼

PN trees

i¼1 f iðxÞ; where the classi-
fier f iðxÞ ¼ 1 if an event lands on signal leaf, and
f iðxÞ ¼ �1 if an event lands on background leaf.
This minimization is closely related to minimizing
the binomial log-likelihood [4]. It can be shown
that Eðe�yF ðxÞÞ is minimized at

F ðxÞ ¼
1

2
ln

Pðy ¼ 1jxÞ

Pðy ¼ �1jxÞ
¼
1

2
ln

pðxÞ

1� pðxÞ
:

Let y� ¼ ðy þ 1Þ=2: It is then easy to show that

e�yF ðxÞ ¼
jy� � pðxÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞð1� pðxÞÞ

p :

The right-hand side is known as the w statistic. w2 is
a quadrative approximation to the log-likelihood,
so w can be considered a gentler alternative. It
turns out that fitting using w is monotone and
smooth; the criteria will continually drive the
estimates towards purer solutions. An ANN tries
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to minimize the squared-error Eðy � F ðxÞÞ2; where
y ¼ 1 for signal events, y ¼ 0 for background
events, and F ðxÞ is the network prediction for
training events.
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Ntree ¼ 1000 versus the intrinsic ne CCQE selection efficiency.

Bottom: AdaBoost output, all kinds of backgrounds are

combined for the boosting training.
3. Results

For the nm ! ne oscillation search in the
MiniBooNE experiment [1], the main backgrounds
come from intrinsic ne contamination in the beam,
mis-identified nm quasi-elastic scattering and mis-
identified neutral current p0 production. Since
intrinsic ne events are real ne events, the PID
variables cannot distinguish them from oscillation
ne events. This report concentrates on separating
the non-ne events from the ne events. Good
sensitivity for the ne appearance search requires
low background contamination from all kinds of
backgrounds. Here, the ANN and the two boost-
ing algorithms are used to separate ne charged
current quasi-elastic (CCQE) events from non-ne
background events.
500 000 Monte Carlo nm events distributed

among the many possible final states and 200 000
intrinsic ne CCQE events were fed into the
reconstruction package R-fitter [9]. Among these
events, 88 233 intrinsic ne CCQE and 162 657
background events passed reconstruction and
pre-selection cuts.
The signature of each event is given by 52

variables for the R-fitter. All variables are used in
the boosting algorithms for training and testing. It
is a challenge to have agreement between data and
Monte Carlo for all of the PID variables and for
the boosting outputs. The MiniBooNE Collabora-
tion is devoting considerable effort to achieve it.
Monte Carlo samples using 18 different parameter
sets have been generated and run through the same
reconstruction programs. The results for both the
PID variables and the boosting outputs are
consistent. When the present Monte Carlo is
compared with the real data samples, the shapes
of the various PID variables and the boosting
outputs match well. Since the reconstruction and
PID algorithms are still undergoing continuous
modifications, relative results rather than absolute
percentages are presented in the following plots.
For the AdaBoost algorithm, the parameter b ¼

0:5; the number of leaves N leaves ¼ 45 and the
number of tree iterations N tree ¼ 1000 were used.
The relative ratio (defined as the number of
background events kept divided by the number
kept for 50% intrinsic ne selection efficiency and
N tree ¼ 1000) as a function of ne selection efficiency
for various tree iterations is shown in the top plot of
Fig. 3 and the AdaBoost output distributions are
shown in the bottom plot. 20 000 intrinsic ne CCQE
signal and 30000 background events were used for
training, 68 233 ne and 132 657 background events
were used for testing. All results shown in the paper
are for testing samples.
In order to quantify the performance of the

boosting algorithm, the AdaBoost results for a
particular set of PID variables were compared
with ANN results. The results, compared as a
function of the intrinsic ne CCQE selection
efficiency, are shown in Fig. 4. For the intrinsic
ne signal efficiency ranging from 40% to 60%, the
performances of AdaBoost were improved by a
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variables. All error bars shown in the figures are for Monte
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factor of approximately 1.5 and 1.8 over the ANN
if trained by the signal and all kinds of back-
grounds with 21 (red dots) and 52 (black boxes)
input variables respectively, shown in Fig. 4(a). If
AdaBoost and ANN were trained by the signal
and neutral current p0 background, the perfor-
mances of AdaBoost were improved by a factor of
approximately 1.3 and 1.6 over the ANN for 22
(red dots) and 52 (black boxes) training variables
respectively, shown in Fig. 4(b). The best results
for the ANN were found with 22 variables, while
the best results for boosting were found with 52
variables. Comparison of the best ANN results
and the best boosting results indicates that, when
trained by the signal and neutral current p0
background, the ANN results kept approximately
1.5 times more background events than were kept
by the boosting algorithms for about 50% ne
CCQE efficiencies.
In Fig. 4(c), the ratio of the background kept for

a 52 variable AdaBoost to that for a 21(red dots—
results for AdaBoost trained by the signal and all
kinds of backgrounds)/22(black boxes—results for
AdaBoost trained by the signal and neutral current
p0 background) variables is shown as a function of
ne efficiency. It can be seen that the AdaBoost
performance is improved by the use of more
training variables.
The above ANN and AdaBoost performance

comparison with different input variables indicates
that AdaBoost can improve the PID performance
significantly by using more input variables, even
though many of them have weak discriminant
power; ANN, however, seems unlikely to make full
use of all input variables because it is more difficult
to optimize all the weights between ANN nodes,
given more nodes in both the input
and the hidden layers. For the MiniBooNE Monte
Carlo samples, the ANN are optimum for approxi-
mately 20 PID variables. The authors have found a
similar number to be true for several
other applications. In general, the optimum number
for ANNmay vary depending on the strength of the
PID variables and the correlations between them.
Further evidence of this effect comes from the S-

fitter [10], a second reconstruction—PID program
set for the MiniBooNE. A systematic attempt was
made to find the optimum sets of variables for ANN
and for boosting classifiers by using ne CCQE signal
and p0 background (which includes 25 reaction
channels). It is found that, for the S-fitter, the
optimum ANN result is achieved by a selected set of
22 variables, while for boosting, no obvious
improvement is seen after a selected optimum set
of 50 variables is used. Comparison of the best
ANN results and the best boosting results indicates
that, for a given fraction of ne CCQE events kept,
the ANN results kept about 1.2 times more p0

background events than were kept by the boosting
algorithms within the target range of keeping close
to 50% of the ne CCQE events.
As noted in the introduction, two boosting

algorithms are considered in the present paper.
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The comparison of AdaBoost and �-Boost perfor-
mance is shown in Fig. 5, where parameters b ¼

0:5 and � ¼ 0:01 were selected for AdaBoost and �-
Boost training, respectively. The comparison
between small tree size (8 leaves) and large tree
size (45 leaves) with a comparable overall number
of decision leaves, indicates that large tree size
with 45 leaves yields 10 � 20% better performance
for the MiniBooNE Monte Carlo samples shown
in Fig. 5(a). Increasing the tree size past 45 leaves
did not produce appreciable improvement.
Comparison of AdaBoost and �-Boost perfor-
mance for the background contamination versus
the intrinsic ne CCQE selection efficiency as a
function of the number of decision tree iterations is
shown in Fig. 5(b). A smaller relative ratio implies a
better performance for AdaBoost. The performance
of AdaBoost is better than that of �-Boost if the
relative ratio is less than 1. Boosting performance in
the high signal efficiency region is continuously
improved for more tree iterations. AdaBoost has
better performance than �-Boost for less than about
200 tree iterations, but becomes slightly worse than
�-Boost for a large number of tree iterations,
especially for ne signal efficiency below � 60%:
For higher ne signal efficiency ð470%Þ; AdaBoost
works slightly better than �-Boost.

4. Conclusions

PID variables obtained using the R-fitter and
the S-fitter event reconstruction programs for the
MiniBooNE experiment were used to separate
signal events from background events. The ANN
and the boosting algorithms were compared for
PID. Based on these studies with the MiniBooNE
Monte Carlo samples, the boosting algorithms,
AdaBoost and �-Boost, improved PID perfor-
mance significantly compared with the artificial
neural network technique. This improvement
manifested itself when a large number of PID
variables was used. For a small number of
variables, the ANN classification was competitive,
but as the number of variables was increased, the
boosting results proved more efficient and superior
to the ANN technique. If more variables are
needed, boosting will use them as necessary.
It was also found that boosting with a large tree

size of 45 leaves worked significantly better than
boosting with a small tree size, 8 leaves, as
recommended in some statistics literature.
The boosting technique proved to be quite

robust. If a transformation of variables from x

to y ¼ f ðxÞ is made, then as long as the ordering is
preserved, that is if x24x1; then y24y1; the
boosting results are unchanged. ANNs must be
tuned for temperature, learning rate and other
variables, while for boosting, there is much less to
vary and it is quite straightforward.
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There are certainly applications where ANNs
prove better than boosting. However, for this
application boosting appears superior and seems
to be exceptionally robust and simple to use. It is
anticipated that boosting techniques will have
wide application in physics.
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