Implementation of e-ID based on BDT in Athena EgammaRec

Hai-Jun Yang University of Michigan, Ann Arbor (with T. Dai, X. Li, A. Wilson, B. Zhou)

> US-ATLAS Egamma Meeting November 20, 2008

Motivation

- Lepton (e, μ, τ) Identification is crucial for new physics discoveries at the LHC, such as H→
 ZZ→4 leptons, H→WW→ 2 leptons + MET etc.
- ATLAS default electron-ID (IsEM) has relatively low efficiency (~67%), which has significant impact on ATLAS early discovery potential in H→WW, ZZ detection with electron final states.
- It is important and also feasible to improve e-ID efficiency and to reduce jet fake rate by making full use of available variables using BDT.

Electron ID Studies with BDT

Select electrons in two steps

- 1) Pre-selection: an EM cluster matching a track
- 2) Apply electron ID based on pre-selected samples with different e-ID algorithms (IsEM, Likelihood ratio, AdaBoost and **EBoost**).

New BDT e-ID development at U. Michigan (Rel. v12)

H. Yang's talk at US-ATLAS Jamboree on Sept. 10, 2008
 <u>http://indico.cern.ch/conferenceDisplay.py?confld=38991</u>

New BDT e-ID (EBoost) based on Rel. v13

 H. Yang's talk at ATLAS performance and physics workshop at CERN on Oct. 2, 2008

http://indico.cern.ch/conferenceDisplay.py?confld=39296

Implementation of EBoost in EgammaRec (Rel. v14)

Electrons

Electron ID with BDT

Electron Pre-selection Efficiency

The inefficiency mainly due to track matching

Variables Used for BDT e-ID (EBoost)

The same variables for IsEM are used

egammaPID::ClusterHadronicLeakage

fraction of transverse energy in TileCal 1st sampling

egammaPID::ClusterMiddleSampling

Ratio of energies in 3*7 & 7*7 window Ratio of energies in 3*3 & 7*7 window Shower width in LAr 2nd sampling Energy in LAr 2nd sampling

egammaPID::ClusterFirstSampling

Fraction of energy deposited in 1st sampling Delta Emax2 in LAr 1st sampling Emax2-Emin in LAr 1st sampling Total shower width in LAr 1st sampling Shower width in LAr 1st sampling Fside in LAr 1st sampling • egammaPID::TrackHitsA0

B-layer hits, Pixel-layer hits, Precision hits Transverse impact parameter

• egammaPID::TrackTRT

Ratio of high threshold and all TRT hits

egammaPID::TrackMatchAndEoP

Delta eta between Track and egamma Delta phi between Track and egamma

- E/P egamma energy and Track momentum ratio
- Track Eta and EM Eta

• Electron isolation variables: Number of tracks ($\Delta R=0.3$) Sum of track momentum ($\Delta R=0.3$) Ratio of energy in $\Delta R=0.2$ -0.45 and $\Delta R=0.45$

BDT e-ID (EBoost) Training (v13)

- BDT multivariate pattern recognition technique:
 [H. Yang et. al., NIM A555 (2005) 370-385]
- BDT e-ID training signal and backgrounds (jet faked e)
 - $W \rightarrow ev$ as electron signal (DS 5104, v13)
 - Di-jet samples (J0-J6), Pt=[8-1120] GeV (DS 5009-5015, v13)
- BDT e-ID training procedure
 - Event weight training based on background cross sections
 [H. Yang et. al., JINST 3 P04004 (2008)]
 - Apply additional cuts on the training samples to select hardly identified jet faked electron as background for BDT training to make the BDT training more effective.
 - Apply additional event weight to high P_T backgrounds to effective reduce the jet fake rate at high P_T region.

Implementation of BDT Trees in EgammaRec Package and Test

- E-ID based on BDT has been implemented into egammaRec (04-02-98) package (private).
- We run through the whole reconstruction package based on v14.2.22 to test the BDT e-ID.

E-ID Testing Samples (v13)

Wenu: DS5104 (Eff_precuts = 89.1%)
 - 46554 electrons with Et>10 GeV, |η|<2.5
 - 41457 electrons after pre-selection cuts

- JF17: DS5802 (Eff_precuts = 7.7%)
 - 3893936 events, 14560093 jets
 - 1123231 jets after pre-selection

Comparison of e-ID Algorithms (v13)

E-ID Testing Samples (v14)

- Wenu: DS106020 (Eff_precuts = 86.9%)
 - 173930 events, 173822 electrons
 - 130589 electrons with Et>10GeV, $|\eta|$ <2.5
 - 113500 electrons with pre-selection cuts

- JF17: DS105802 (Eff_precuts = 8%)
 475900 events, 1793636 jets
 - With pre-selection, 143167 jets

E-ID Discriminators (v13 vs v14)

Comparison of e-ID Algorithms (v14)

Overall E-ID Efficiency and Jet Fake Rates (v13 vs. v14)

Test MC	Precuts	IsEM(tight)	LH>6.5	AdaBoost > 6	EBoost > 100
W→e _V (v13)	89.1%	65.7%	78.5%	79.8%	84.3%
W→ev (v14)	86.9%	68.7%	70.9%	73.0%	80.0%
Eff. change	-2.2%	+3%	-7.6%	-6.8%	-4.3%
JF17 (v13)	7.7E-2	6.9E-4	3.7E-4	2.8E-4	1.9E-4
JF17 (v14)	8.0E-2	11E-4	4.6E-4	2.9E-4	1.9E-4
Relative change	+4%	+59%	+24%	+3.6%	0

E-ID Efficiency vs Pt (v14)

E-ID Efficiency vs η (v14)

Future Plan

- We have requested to add EBoost in ATLAS official egammaRec package and make EBoost discriminator variable available for physics analysis.
- We will provide EBoost trees to ATLAS egammaRec for each major software release
- Explore new variables and BDT training techniques to further improve the e-ID performance

Backup Slides

Jet Fake Rate (v14)

List of Variables for BDT

- 1. Ratio of Et(∆R=0.2-0.45) / Et(∆R=0.2)
- 2. Number of tracks in $\Delta R=0.3$ cone
- 3. Energy leakage to hadronic calorimeter
- 4. EM shower shape E237 / E277
- 5. $\Delta\eta$ between inner track and EM cluster
- 6. Ratio of high threshold and all TRT hits
- 7. Number of pixel hits and SCT hits
- 8. $\Delta \phi$ between track and EM cluster
- 9. Emax2 Emin in LAr 1st sampling
- 10. Number of B layer hits
- 11. Number of TRT hits
- 12. Emax2 in LAr 1st sampling
- 13. EoverP ratio of EM energy and track momentum
- 14. Number of pixel hits
- 15. Fraction of energy deposited in LAr 1st sampling
- 16. Et in LAr 2nd sampling
- 17. η of EM cluster
- 18. D0 transverse impact parameter
- 19. EM shower shape E233 / E277
- 20. Shower width in LAr 2nd sampling
- 21. Fracs1 ratio of (E7strips-E3strips)/E7strips in LAr 1st sampling
- 22. Sum of track Pt in DR=0.3 cone
- 23. Total shower width in LAr 1st sampling
- 24. Shower width in LAr 1st sampling

EM Shower shape distributions of discriminating Variables (signal vs. background)

0.8

 E_{237}/E_{277}

0.9

 $1'_{2}$

1.1

ECal and Inner Track Match

0

0.5

0.025 0.05 0.075 0.1

Ó

 $\Delta\eta_{e\text{-trk}}$

0

-0.1 -0.075 -0.05 -0.025

3.5

3

2.5

1.5

E/P

Electron Isolation Variables

Example: H→ WW →IvIv Studies [H. Yang et.al., ATL-COM-PHYS-2008-023]

- At least one lepton pair (ee, $\mu\mu$, $e\mu$) with P_T > 10 GeV, $|\eta|$ <2.5
- Missing $E_T > 20 \text{ GeV}$, max($P_T(I), P_T(I)$) > 25 GeV
- $|M_{ee} M_z| > 10$ GeV, $|M_{\mu\mu} M_z| > 15$ GeV to suppress background from Z \rightarrow ee, $\mu\mu$

Higgs Mass (GeV)	Eff(evev)	Eff($\mu \nu \mu \nu$)	$Eff(ev\mu v)$
140	26.3%	49.9%	34.2%
150	28.5%	51.1%	37.0%
160	29.9%	53.3%	39.9%
165	30.5%	54.1%	40.8%
170	30.5%	52.7%	42.2%
180	29.3%	50.1%	43.2%

Used ATLAS electron ID: IsEM & 0x7FF == 0

Comparison of e-ID Algorithms (v14)

Signal Pre-selection: MC electrons

- MC True electron from W \rightarrow ev by requiring - $|\eta_e| < 2.5$ and $E_T^{true} > 10$ GeV (N_e)
- Match MC e/ γ to EM cluster:

- ΔR <0.2 and 0.5 < E_T^{rec} / E_T^{true}< 1.5 (N_{EM})

• Match EM cluster with an inner track:

 $-eg_trkmatchnt > -1$ (N_{EM/track})

• Pre-selection Efficiency = $N_{EM/Track} / N_{e}$

Pre-selection of Jet Faked Electrons

• Count number of jets with

- $|\eta_{jet}|$ < 2.5, E_T^{jet} >10 GeV (N_{jet})

- Loop over all EM clusters; each cluster matches with a jet
 - E_T^{EM} > 10 GeV (N_{EM})
- Match EM cluster with an inner track:

 $-eg_trkmatchnt > -1$ (N_{EM/track})

Pre-selection Acceptance = N_{EM/Track} / N_{jet}

Comparisons of v13 and v14

Comparisons of v13 and v14

29