Implementation of e-ID based on BDT in Athena EgammaRec

Hai-Jun Yang
University of Michigan, Ann Arbor
(with T. Dai, X. Li, A. Wilson, B. Zhou)

ATLAS HSG3 Meeting November 19, 2008

Motivation

- Lepton (e, μ, τ) Identification is crucial for new physics discoveries at the LHC, such as H→
 ZZ→4 leptons, H→WW→ 2 leptons + MET etc.
- ATLAS default electron-ID (IsEM) has relatively low efficiency (~67%), which has significant impact on ATLAS early discovery potential in H→WW, ZZ detection with electron final states.
- It is important and also feasible to improve e-ID efficiency and to reduce jet fake rate by making full use of available variables using BDT.

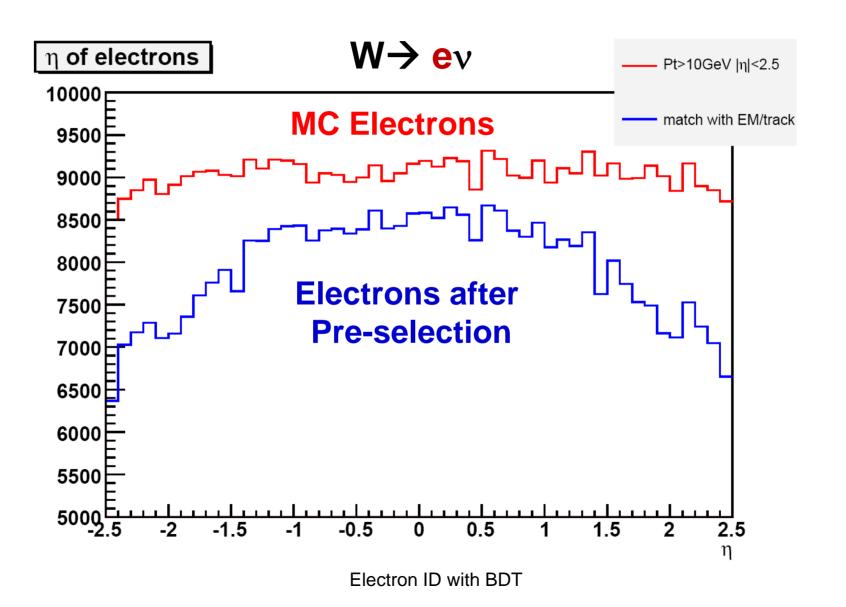
Electron ID Studies with BDT

Select electrons in two steps

- 1) Pre-selection: an EM cluster matching a track
- 2) Apply electron ID based on pre-selected samples with different e-ID algorithms (IsEM, Likelihood ratio, AdaBoost and EBoost).

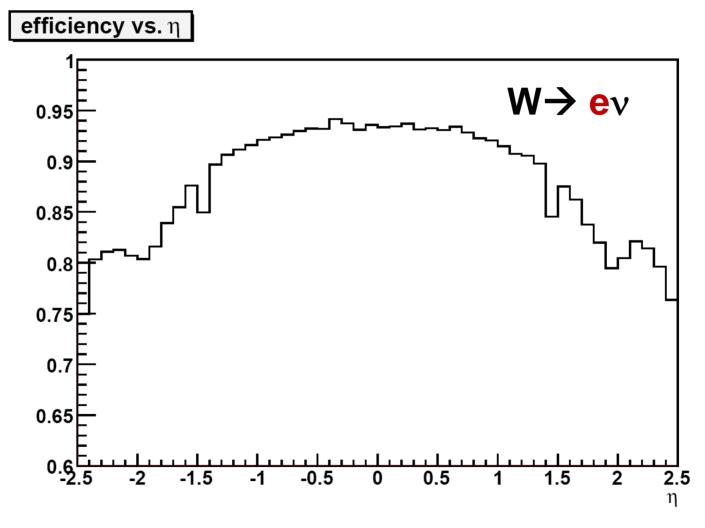
New BDT e-ID development at U. Michigan (Rel. v12)

H. Yang's talk at US-ATLAS Jamboree on Sept. 10, 2008
 http://indico.cern.ch/conferenceDisplay.py?confld=38991


New BDT e-ID (EBoost) based on Rel. v13

 H. Yang's talk at ATLAS performance and physics workshop at CERN on Oct. 2, 2008

http://indico.cern.ch/conferenceDisplay.py?confld=39296


Implementation of EBoost in EgammaRec (Rel. v14)

Electrons

Electron Pre-selection Efficiency

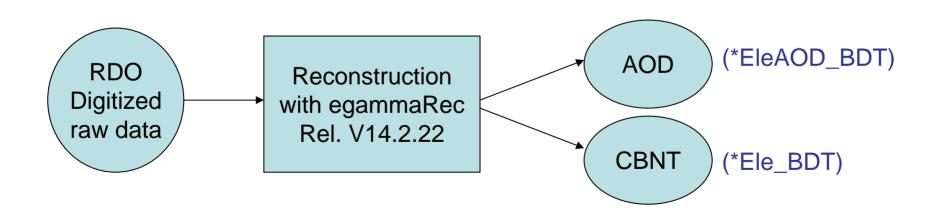
The inefficiency mainly due to track matching

Variables Used for BDT e-ID (EBoost)

The same variables for IsEM are used

- egammaPID::ClusterHadronicLeakage
 fraction of transverse energy in TileCal 1st sampling
- egammaPID::ClusterMiddleSampling
 Ratio of energies in 3*7 & 7*7 window
 Ratio of energies in 3*3 & 7*7 window
 Shower width in LAr 2nd sampling
 Energy in LAr 2nd sampling
- ► egammaPID::ClusterFirstSampling
 Fraction of energy deposited in 1st sampling
 Delta Emax2 in LAr 1st sampling
 Emax2-Emin in LAr 1st sampling
 Total shower width in LAr 1st sampling
 Shower width in LAr 1st sampling
 Fside in LAr 1st sampling

- egammaPID::TrackHitsA0
 B-layer hits, Pixel-layer hits, Precision hits
 Transverse impact parameter
- egammaPID::TrackTRTRatio of high threshold and all TRT hits
- egammaPID::TrackMatchAndEoP
 Delta eta between Track and egamma
 Delta phi between Track and egamma
 E/P egamma energy and Track momentum ratio
- Track Eta and EM Eta
- Electron isolation variables:


Number of tracks ($\triangle R$ =0.3) Sum of track momentum ($\triangle R$ =0.3) Ratio of energy in $\triangle R$ =0.2-0.45 and $\triangle R$ =0.45

BDT e-ID (EBoost) Training (v13)

- BDT multivariate pattern recognition technique:
 - [H. Yang et. al., NIM A555 (2005) 370-385]
- BDT e-ID training signal and backgrounds (jet faked e)
 - W→ev as electron signal (DS 5104, v13)
 - Di-jet samples (J0-J6), Pt=[8-1120] GeV (DS 5009-5015, v13)
- BDT e-ID training procedure
 - Event weight training based on background cross sections
 [H. Yang et. al., JINST 3 P04004 (2008)]
 - Apply additional cuts on the training samples to select hardly identified jet faked electron as background for BDT training to make the BDT training more effective.
 - Apply additional event weight to high P_T backgrounds to effective reduce the jet fake rate at high P_T region.

Implementation of BDT Trees in EgammaRec Package and Test

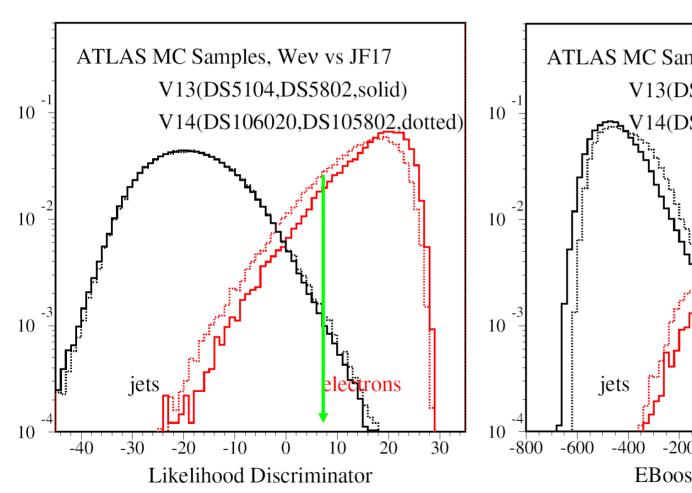
- E-ID based on BDT has been implemented into egammaRec (04-02-98) package (private).
- We run through the whole reconstruction package based on v14.2.22 to test the BDT e-ID.

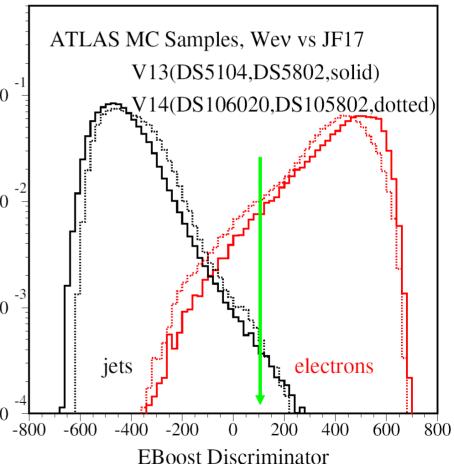
E-ID Testing Samples (v13)

- Wenu: DS5104 (Eff_precuts = 89.1%)
 - -46554 electrons with Et>10 GeV, $|\eta|$ <2.5
 - 41457 electrons after pre-selection cuts

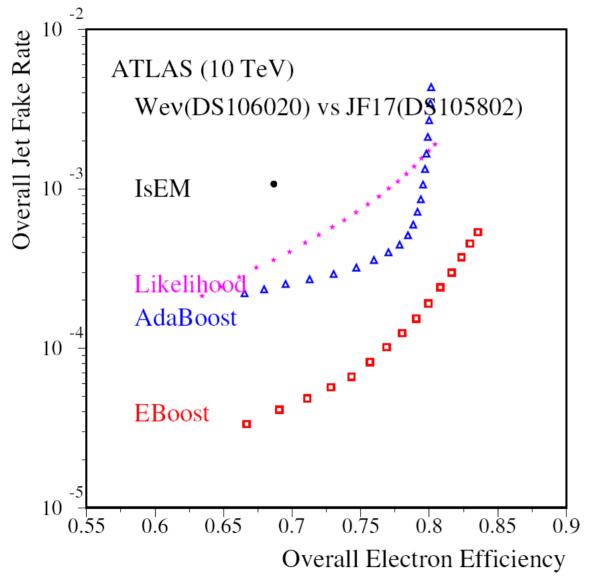
- JF17: DS5802 (Eff_precuts = 7.7%)
 - -14560093 jets with Et>10 GeV, $|\eta|$ <2.5
 - 1123231 jets after pre-selection

Comparison of e-ID Algorithms (v13)


- →IsEM (tight) Eff = 65.7% jet fake rate = 6.9E-4
- → Likelihood Ratio (>6.5) Eff = 78.5% jet fake rate = 3.7E-4
- →AdaBoost (>6) Eff = 79.8% jet fake rate = 2.8E-4
- →EBoost (>100) Eff = 84.3% jet fake rate = 1.9E-4


E-ID Testing Samples (v14)

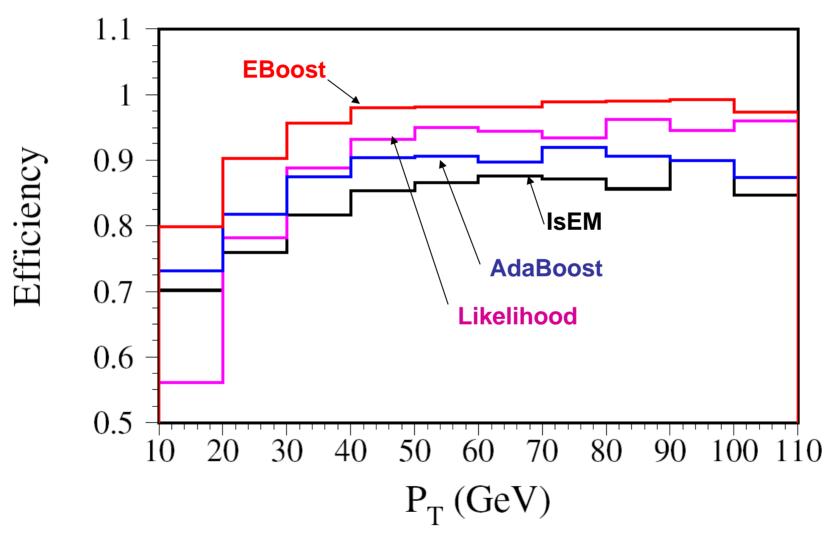
- Wenu: DS106020 (Eff_precuts = 86.9%)
 - 173930 events, 173822 electrons
 - -130589 electrons with Et>10GeV, $|\eta|$ <2.5
 - 113500 electrons with pre-selection cuts


- JF17: DS105802 (Eff_precuts = 8%)
 - 475900 events, 1793636 jets
 - With pre-selection, 143167 jets

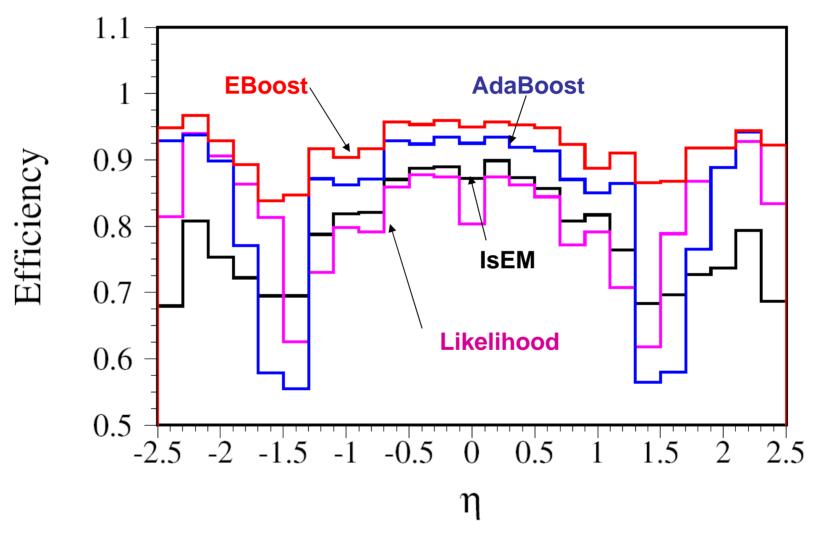
E-ID Discriminators (v13 vs v14)

Comparison of e-ID Algorithms (v14)

- →IsEM (tight)


 Eff = 68.7%

 jet fake rate = 1.1E-3
- → Likelihood Ratio (>6.5) Eff = 70.9% jet fake rate = 4.6E-4
- →AdaBoost (>6) Eff = 73% jet fake rate = 2.9E-4
- →EBoost (>100) Eff = 80% jet fake rate = 1.9E-4

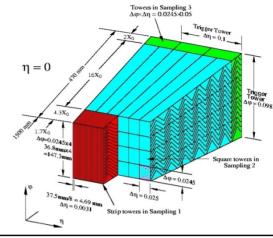

Overall E-ID Efficiency and Jet Fake Rates (v13 vs. v14)

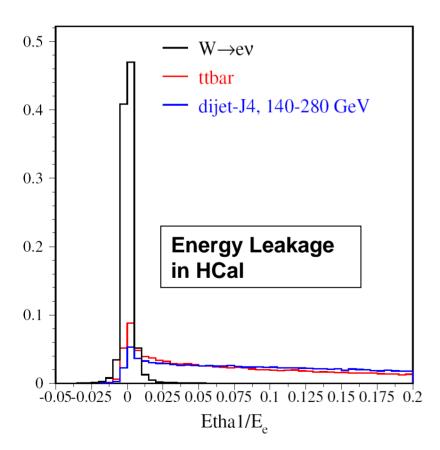
Test MC	Precuts	IsEM(tight)	LH>6.5	AdaBoost > 6	EBoost > 100
W→ev (v13)	89.1%	65.7%	78.5%	79.8%	84.3%
W→e _V (v14)	86.9%	68.7%	70.9%	73.0%	80.0%
JF17 (v13)	7.7E-2	6.9E-4	3.7E-4	2.8E-4	1.9E-4
JF17 (v14)	8.0E-2	11E-4	4.6E-4	2.9E-4	1.9E-4

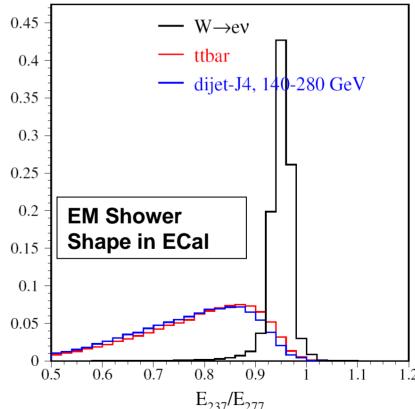
E-ID Efficiency vs Pt (v14)

E-ID Efficiency vs η (v14)

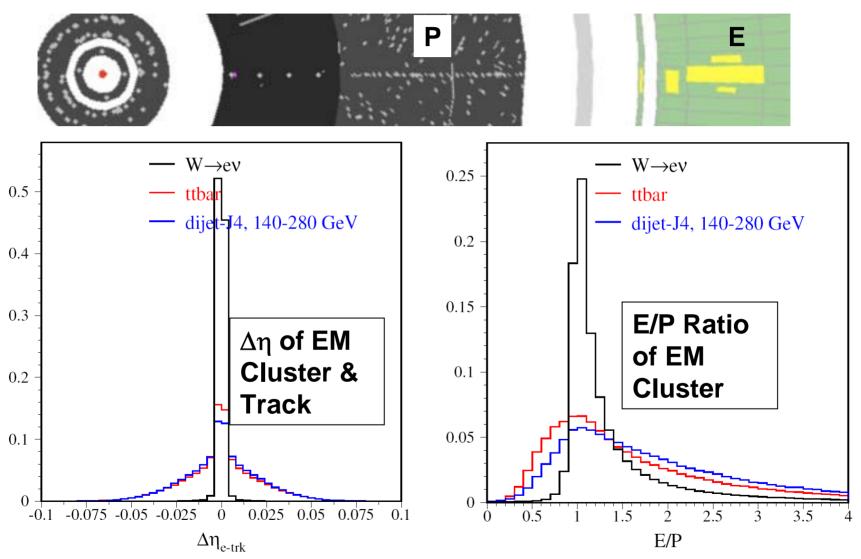
Future Plan

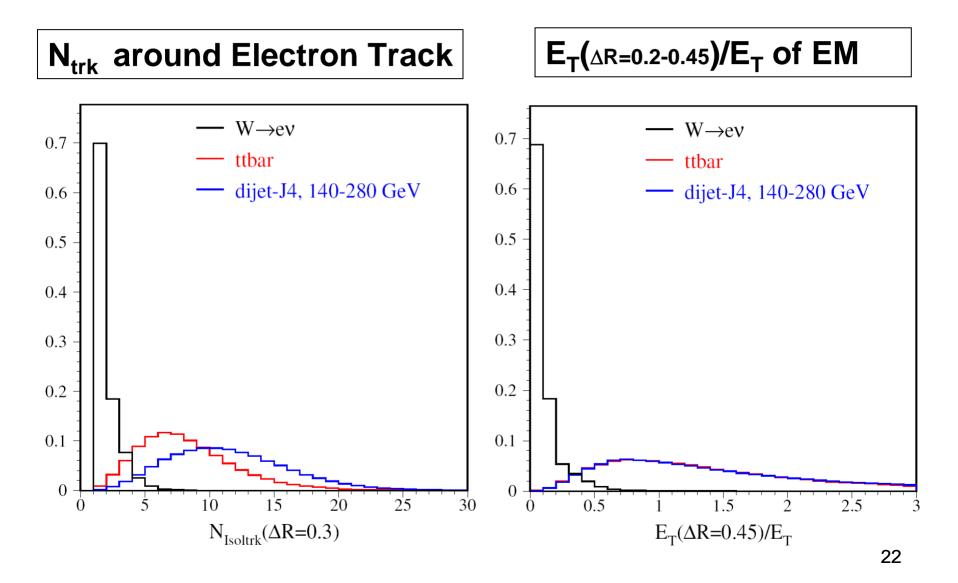

- We have requested to add EBoost in ATLAS official egammaRec package and make EBoost discriminator variable available for physics analysis.
- We will provide EBoost trees to ATLAS egammaRec for each major software release
- Explore new variables and BDT training techniques to further improve the e-ID performance


Backup Slides


List of Variables for BDT

- 1. Ratio of Et(Δ R=0.2-0.45) / Et(Δ R=0.2)
- 2. Number of tracks in $\Delta R=0.3$ cone
- 3. Energy leakage to hadronic calorimeter
- 4. EM shower shape E237 / E277
- 5. $\Delta \eta$ between inner track and EM cluster
- 6. Ratio of high threshold and all TRT hits
- 7. Number of pixel hits and SCT hits
- 8. $\Delta \phi$ between track and EM cluster
- 9. Emax2 Emin in LAr 1st sampling
- 10. Number of B layer hits
- 11. Number of TRT hits
- 12. Emax2 in LAr 1st sampling
- 13. EoverP ratio of EM energy and track momentum
- 14. Number of pixel hits
- 15. Fraction of energy deposited in LAr 1st sampling
- 16. Et in LAr 2nd sampling
- 17. η of EM cluster
- 18. D0 transverse impact parameter
- 19. EM shower shape E233 / E277
- 20. Shower width in LAr 2nd sampling
- 21. Fracs1 ratio of (E7strips-E3strips)/E7strips in LAr 1st sampling
- 22. Sum of track Pt in DR=0.3 cone
- 23. Total shower width in LAr 1st sampling
- 24. Shower width in LAr 1st sampling

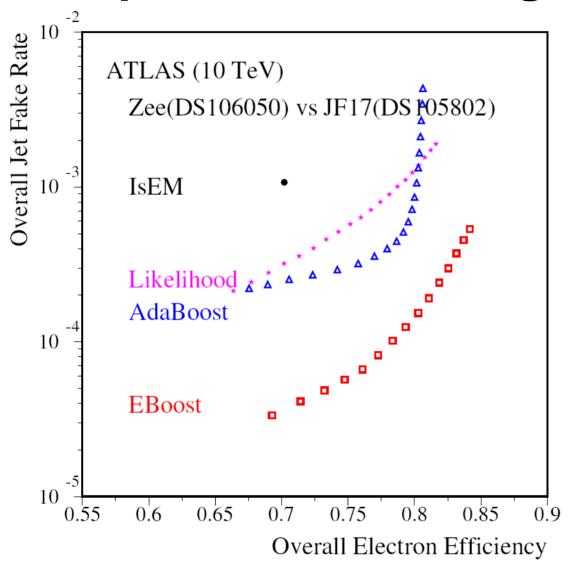

EM Shower shape distributions of discriminating Variables (signal vs. background)



ECal and Inner Track Match

Electron Isolation Variables

Example: H→ WW →IvIv Studies


[H. Yang et.al., ATL-COM-PHYS-2008-023]

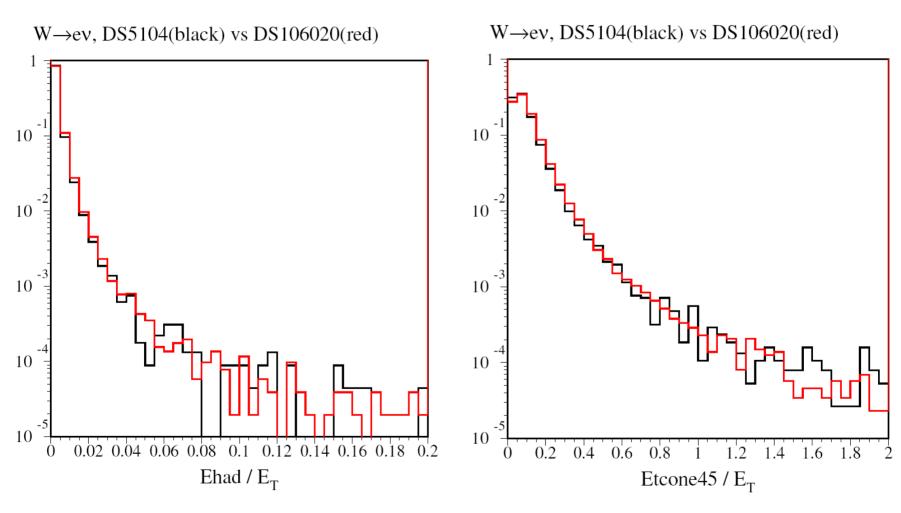
- At least one lepton pair (ee, $\mu\mu$, e μ) with $P_T > 10$ GeV, $|\eta| < 2.5$
- Missing $E_T > 20$ GeV, $max(P_T(I), P_T(I)) > 25$ GeV
- $|M_{ee} M_z| > 10$ GeV, $|M_{\mu\mu} M_z| > 15$ GeV to suppress background from Z \rightarrow ee, $\mu\mu$

Higgs Mass (GeV)	Eff(evev)	$Eff(\mu\nu\mu\nu)$	Eff(eνμν)
140	26.3%	49.9%	34.2%
150	28.5%	51.1%	37.0%
160	29.9%	53.3%	39.9%
165	30.5%	54.1%	40.8%
170	30.5%	52.7%	42.2%
180	29.3%	50.1%	43.2%

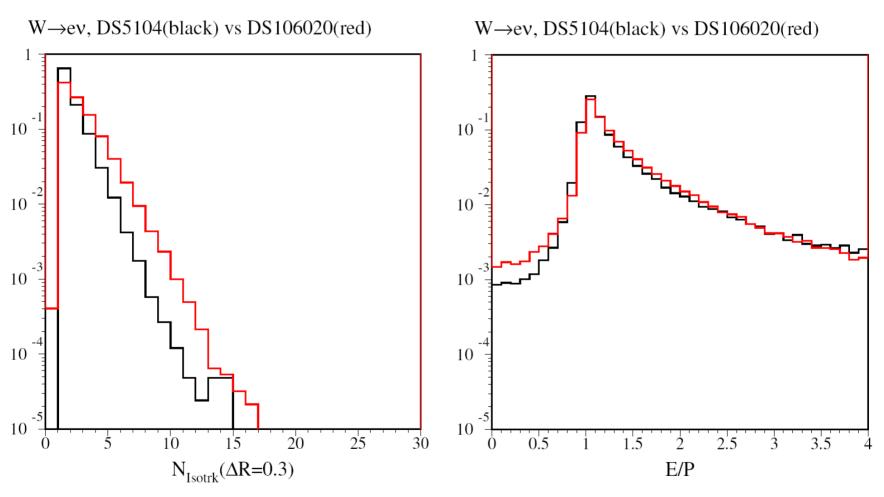
Used ATLAS electron ID: IsEM & 0x7FF == 0

Comparison of e-ID Algorithms (v14)

- →IsEM (tight)
 Eff = 70.2%
 jet fake rate = 1.1E-3
- → Likelihood Ratio (>6.5) Eff = 73.4% jet fake rate = 4.6E-4
- →AdaBoost (>6) Eff = 74.2% jet fake rate = 2.9E-4
- →EBoost (>100) Eff = 81.1% jet fake rate = 1.9E-4


Signal Pre-selection: MC electrons

- MC True electron from W→ev by requiring
 - $|\eta_e| < 2.5$ and $E_T^{true} > 10$ GeV (N_e)
- Match MC e/γ to EM cluster:
 - $-\Delta R < 0.2$ and $0.5 < E_T^{rec} / E_T^{true} < 1.5 (N_{FM})$
- Match EM cluster with an inner track:
 - $-eg_{trkmatchnt} > -1 (N_{EM/track})$
- Pre-selection Efficiency = N_{EM/Track} / N_e


Pre-selection of Jet Faked Electrons

- Count number of jets with
 - $|\eta_{jet}| < 2.5, E_T^{jet} > 10 \text{ GeV } (N_{jet})$
- Loop over all EM clusters; each cluster matches with a jet
 - $-E_T^{EM} > 10 \text{ GeV } (N_{EM})$
- Match EM cluster with an inner track:
 - $-eg_{trkmatchnt} > -1 (N_{EM/track})$
- Pre-selection Acceptance = N_{EM/Track} / N_{jet}

Comparisons of v13 and v14

Comparisons of v13 and v14

