Performance of BDTs for Electron Identification

Hai-Jun Yang University of Michigan, Ann Arbor (with T. Dai, X. Li, A. Wilson, B. Zhou)

> ATLAS Egamma Meeting December 17, 2008

Motivation

- Lepton (e, μ , τ) Identification with high efficiency is crucial for new physics discoveries at the LHC
- Great efforts in ATLAS to develop the algorithms for electron identification:
 - Cut-based algorithm: IsEM
 - Multivariate algorithms: Likelihood and BDT
- Further improvement could be achieved with better treatment of the multivariate training using the Boosted Decision Trees technique

Electron ID Studies with BDT

Select electrons in two steps

- 1) Pre-selection: an EM cluster matching a track
- 2) Apply electron ID based on pre-selected samples with different e-ID algorithms (IsEM, Likelihood ratio, AdaBoost and **EBoost**).

New BDT e-ID development at U. Michigan (Rel. v12)

H. Yang's talk at US-ATLAS Jamboree on Sept. 10, 2008
 <u>http://indico.cern.ch/conferenceDisplay.py?confld=38991</u>

New BDT e-ID (EBoost) based on Rel. v13

 H. Yang's talk at ATLAS performance and physics workshop at CERN on Oct. 2, 2008

http://indico.cern.ch/conferenceDisplay.py?confld=39296

Implementation of **EBoost** in EgammaRec (Rel. v14)

Electrons

Electron Pre-selection Efficiency

The inefficiency mainly due to track matching

BDT e-ID (EBoost) Training

- BDT multivariate pattern recognition technique:
 [H. Yang et. al., NIM A555 (2005) 370-385]
- BDT e-ID training signal and backgrounds (jet faked e)
 - W→ev as electron signal (DS 5104, v13)
 - JF17 (DS 5802, v13)
- Using the same e-ID variables as IsEM for training (see variable list in next page)
- BDT e-ID training procedure
 - Apply additional cuts on the training samples to select hardly identified jet faked electron as background for BDT training to make the BDT training more effective.
 - Apply event weight to high P_T backgrounds to effective reduce the jet fake rate at high P_T region. Event weight training technique reference, [H. Yang et. al., JINST 3 P04004 (2008)]

Variables Used for BDT e-ID (EBoost)

The same variables for IsEM are used

egammaPID::ClusterHadronicLeakage

fraction of transverse energy in TileCal 1st sampling

egammaPID::ClusterMiddleSampling

Ratio of energies in 3*7 & 7*7 window Ratio of energies in 3*3 & 7*7 window Shower width in LAr 2nd sampling Energy in LAr 2nd sampling

egammaPID::ClusterFirstSampling

Fraction of energy deposited in 1st sampling Delta Emax2 in LAr 1st sampling Emax2-Emin in LAr 1st sampling Total shower width in LAr 1st sampling Shower width in LAr 1st sampling Fside in LAr 1st sampling • egammaPID::TrackHitsA0

B-layer hits, Pixel-layer hits, Precision hits Transverse impact parameter

egammaPID::TrackTRT

Ratio of high threshold and all TRT hits

egammaPID::TrackMatchAndEoP

Delta eta between Track and egamma Delta phi between Track and egamma E/P – egamma energy and Track momentum ratio

- Track Eta and EM Eta
- Electron isolation variables: Number of tracks ($\Delta R=0.3$) Sum of track momentum ($\Delta R=0.3$) Ratio of energy in EtCone45 / E_T

Implementation of BDT Trees in EgammaRec Package and Test

- E-ID based on BDT has been implemented into egammaRec (04-02-98) package (private).
- We run through the whole reconstruction package based on v14.2.22 to test the BDT e-ID.

E-ID Testing Samples Produced at $\sqrt{s} = 14$ TeV (v13)

- Wenu: DS5104 (Eff_precuts = 88.6%)
 42020 electrons with Et>17 GeV, |η|<2.5
 37230 electrons after pre-selection cuts
- Zee: DS5144 (Eff_precuts = 88.6%)
 181281 electron with Et>17 GeV, |η|<2.5
 160615 electrons after pre-selection cuts
- JF17: DS5802 (Eff_precuts = 2.4%)
 1946968 events, 7280046 reconstructed jets
 176727 jets after pre-selection

Comparison of e-ID Algorithms (v13)

E-ID Efficiency after pre-selection vs η (v13, jet fake rate=1.0E-4)

Efficiency

11

E-ID Efficiency after pre-selection vs Pt (v13, jet fake rate=1.0E-4)

12

E-ID Testing Samples Produced at $\sqrt{s} = 10$ TeV (v14)

- Wenu: DS106020 (Eff_precuts = 86.7%) -58954 electrons with Et>17 GeV, $|\eta|<2.5$ -51100 electrons after pre-selection cuts
- Zee: DS106050 (Eff_precuts = 86.7%)
 - 108550 electrons with Et>17 GeV, $|\eta|$ <2.5
 - 94153 electrons after pre-selection cuts
- JF17: DS105802 (Eff_precuts = 2.34%)

-237950 events, 896818 reconstructed jets

- 20994 jets after pre-selection cuts

Variable distribution Comparison 14 TeV vs 10 TeV

W→ev, DS5104(14TeV,black) vs DS106020(10TeV,red)

Variable distribution Comparison 14 TeV vs 10 TeV

W→ev, DS5104(14TeV,black) vs DS106020(10TeV,red)

15

E-ID Discriminators with no retraining for 10 TeV MC Samples

Comparison of e-ID Algorithms (v14)

Robustness of Multivariate e-ID ($\sqrt{s} = 14$ TeV vs. 10 TeV without retraining)

Test MC	Precuts	Likelihood	AdaBoost	EBoost
Z→ee (v13) √s =14 TeV	88.6%	75.9%	69.3%	86.0%
Z→ee (v14) √s =10 TeV	86.7%	62.9%	61.2%	82.2%
Eff. Change after pre-sel	-1.9%	-13.0% -11.1%	-8.1% -6.2%	- <mark>3.8%</mark> -1.9%
JF17 (v13) √s =14 TeV	2.4E-2	1.0E-4	1.0E-4	1.0E-4
JF17 (v14) √s =10 TeV	2.3E-2	1.0E-4	1.0E-4	1.0E-4

Robustness of Multivariate e-ID ($\sqrt{s} = 14 \text{ vs } 10 \text{ TeV}$ without retraining)

Test MC	Precuts	Likelihood	AdaBoost	EBoost
Z→ee (v13) √s =14 TeV	88.6%	81.3%	83.2%	87.5%
Z→ee (v14) √s =10 TeV	86.7%	71.6%	78.5%	83.9%
Eff. Change after pre-sel	-1.9%	-9.7% -7.8%	-4.7% -2.8%	- <mark>3.6%</mark> -1.7%
JF17 (v13) √s =14 TeV	2.4E-2	2.0E-4	2.0E-4	2.0E-4
JF17 (v14) √s =10 TeV	2.3E-2	2.0E-4	2.0E-4	2.0E-4

Improvement with EBoost Retraining using $\sqrt{s} = 10$ TeV MC Samples

→EBoost (retrained) Eff = 82.2 → 83.4% jet fake rate = 1.0E-4

➔ For each major release multivariate e-ID should be retrained to obtain optimal performance

All multivariate e-ID should be retrained using real data

E-ID Efficiency after pre-selection vs η (v14, jet fake rate=1.0E-4)

Efficiency

21

E-ID Efficiency after pre-selection vs Pt (v14, jet fake rate=1.0E-4)

Efficiency

22

Future Plan

- We have requested to add the EBoost in ATLAS official egammaRec package and make EBoost discriminator variable available for more test and for physics analysis.
- We have proposed to provide EBoost trees to ATLAS egammaRec for each major software release
- We will explore new variables to further improve e-ID by suppressing γ converted electron etc.

Backup Slides

List of Variables for BDT

- 1. Ratio of Et(∆R=0.2-0.45) / Et(∆R=0.2)
- 2. Number of tracks in $\Delta R=0.3$ cone
- 3. Energy leakage to hadronic calorimeter
- 4. EM shower shape E237 / E277
- 5. $\Delta\eta$ between inner track and EM cluster
- 6. Ratio of high threshold and all TRT hits
- 7. Number of pixel hits and SCT hits
- 8. $\Delta \phi$ between track and EM cluster
- 9. Emax2 Emin in LAr 1st sampling
- 10. Number of B layer hits
- 11. Number of TRT hits
- 12. Emax2 in LAr 1st sampling
- 13. EoverP ratio of EM energy and track momentum
- 14. Number of pixel hits
- 15. Fraction of energy deposited in LAr 1st sampling
- 16. Et in LAr 2nd sampling
- 17. η of EM cluster
- 18. D0 transverse impact parameter
- 19. EM shower shape E233 / E277
- 20. Shower width in LAr 2nd sampling
- 21. Fracs1 ratio of (E7strips-E3strips)/E7strips in LAr 1st sampling
- 22. Sum of track Pt in DR=0.3 cone
- 23. Total shower width in LAr 1st sampling
- 24. Shower width in LAr 1st sampling

EM Shower shape distributions of discriminating Variables (signal vs. background)

ECal and Inner Track Match

0

0.5

0.025 0.05 0.075 0.1

Ó

 $\Delta\eta_{e\text{-trk}}$

0

-0.1 -0.075 -0.05 -0.025

29

3.5

Ś

2.5

1.5

E/P

Electron Isolation Variables

Signal Pre-selection: MC electrons

- MC True electron from W→ev by requiring $|\eta_e| < 2.5$ and $E_T^{true} > 17$ GeV (N_e)
- Match MC e/ γ to EM cluster:

- ΔR <0.2 and 0.5 < E_T^{rec} / E_T^{true}< 1.5 (N_{EM})

• Match EM cluster with an inner track:

 $-eg_trkmatchnt > -1$ (N_{EM/track})

• Pre-selection Efficiency = $N_{EM/Track} / N_{e}$

Pre-selection of Jet Faked Electrons

- Count number of reconstructed jets with $- ~ |\eta_{jet}|$ < 2.5 (N_{jet})
- Loop over all EM clusters; each cluster matches with a jet
 - E_T^{EM} > 17 GeV (N_{EM})
- Match EM cluster with an inner track:
 eg_trkmatchnt > -1 (N_{EM/track})
- Pre-selection Acceptance = N_{EM/Track} / N_{jet}