Search for MSSM Higgs at LEP

Haijun Yang University of Michigan, Ann Arbor

Physics Seminar at Univ. of Michigan February 4, 2002

- Introduction of MSSM
- Main Backgrounds
- L3 Analysis Procedure
- LEP Combined Results
- Conclusions

• Minimal Supersymmetric Standard Model

Two Higgs doublets \implies 5 Higgs bosons

 \rightarrow 3 neutral (h & H CP-even, A CP-odd),

 \rightarrow 2 charged Higgs.

• Neutral Higgs - Two Complementary Processes

Higgsstrahlung

Pair Production

$$\sigma_{hZ} = \sin^2(\beta - \alpha)\sigma_{hZ}^{SM}$$

 \implies hZ production is dominant at low $tan\beta$

 \implies hA is dominant at large $tan\beta$.

- Parameters of the MSSM
 - 1. Ratio of two Higgs vacuum expectation values: $\tan \beta$
 - 2. Mass of A boson: m_A
 - 3. Gaugino mass parameter: M_2
 - 4. Scalar fermion mass: m_0
 - 5. Higgsino mass parameter: μ
 - 6. Higgs-sfermion trilinear coupling: A
- Three Benchmark Scenarios
 - $\rightarrow m_h$ Maximal $X_t = A - \mu \cot \beta = \sqrt{6}$ TeV
 - \rightarrow Minimal Mixing: No mixing in stop sector $X_t = A - \mu \cot \beta = 0$
 - \rightarrow large μ

• Higgs decay into $b\bar{b}$ and $\tau^+\tau^-$ is dominant.

 \implies focused on $hA \rightarrow b\bar{b}b\bar{b}$ and $hA \rightarrow b\bar{b}\tau^+\tau^-$.

• Main backgrounds come from WW, ZZ, $q\bar{q}$, $e\nu qq$ and Zee etc.

Data Taking in Y2k

• 4-jet channel: $hA \rightarrow b\bar{b}b\bar{b}$

- Step 1. Preselection: To reject low multiplicity backgrounds while keeping high signal efficiencies(~ 90%).
- Step 2. Neural Network: Discriminant distributions are combined in a neural network.
- Step 3. **Final Discriminant:** Neural network outputs are used to construct final discriminant variable.

- Preselection Cuts
 - 1. Number of tracks ≥ 20
 - 2. Number of calorimetric clusters ≥ 35
 - 3. Visible energy: $0.6 < E_{vis}/\sqrt{s} < 1.4$
 - 4. Perpendicular imbalance energy $\leq 0.35 \bullet E_{vis}$
 - 5. Lepton energy < 65 GeV

6. Longitudinal component of the missing momentum: $P_{miss}^L/(m_{vis}-m_Z) < 0.4$

- Event \Rightarrow 4-jet using DURHAM algorithm
- Kinematic fit: 4-momentum conservation(4C) fit

- Neural Network Inputs:
 - 1. Event B_{tag}
 - 2. Event Sphericity
 - 3. Event Thrust
 - 4. P_{miss}^L
 - 5. Polar angle of Higgs boson: θ_{Higgs}
 - 6. DURHAM jet resolution parameter: Y_{34}^D
 - 7. mass χ^2 $\chi^2(m_A, m_h) = \frac{(\Sigma_i - m_h - m_A)^2}{\sigma_{\Sigma}^2} + \frac{(\Delta_i - |m_h - m_A|)^2}{\sigma_{\Delta}^2}$
- Neural Network Outputs:

Three outputs, Y_{hA} , Y_{WW} and Y_{qq}

• The Final Discriminant is defined as: $F_{hA} \equiv Y_{hA} \bullet (1 - Y_{WW}) \bullet (1 - Y_{q\bar{q}})$

\Rightarrow Data agree with MC backgrounds. \Rightarrow Efficiency is insensitive to Higgs Mass.

- High Discriminant = 0.98
- High B-tag = 0.6
- $m_h + m_A = 178.8 \text{ GeV}$

	ALEPH	DELPHI	L3	OPAL		
Inte. Lumi. (pb^{-1})	217	224	217	208		
$hA \rightarrow b\bar{b}b\bar{b}$ channel						
Data	10	5	12	11		
Total Background	5.5	6.5	7.8	10.3		
4-fermion Bkgd.	4.1	4.4	5.6	6.9		
$qar{q}$ Bkgd.	1.4	2.1	2.2	3.4		
Efficiency	47%	47%	42%	48%		
Expected Signal	3.5	3.6	3.2	3.4		

• The signal efficiency and rate are shown for $m_h = m_A = 90 \ GeV/c^2$, with $tan\beta \sim 20$.

• Tau channel: $hA \rightarrow b\bar{b}\tau^+\tau^-$

- Step 1. Preselection: To reject low multiplicity backgrounds while keeping high signal efficiencies(~ 80%).
- Step 2. **Final Selection:** Two inclusive selections are performed. One based on tau identification(Particle based selection) and the other relying on event kinematics(Jet based selection).
- Step 3. **Final Discriminant:** B-tag of jets, dijet masses are used to construct final discriminant.

• Preselection Cuts:

$$\begin{aligned} N_{scnt} &\geq 4 \\ N_{gtrk} &\geq 5 \\ N_{src} &\geq 15 \\ E_{vis}/\sqrt{S} &\geq 0.4 \\ LOG(Y_{34}^D) &\geq -7 \\ \text{effective energy} &\geq 100 \text{ GeV} \end{aligned}$$

• Final Selection Cuts:

particle-based	jet-based
$LOG(Y_{34}^D) \ge -6$	$LOG(Y_{34}^D) \ge -6$
$E_{\gamma,e,\mu} \le 40 \text{ GeV}$	$E_{\gamma,e,\mu} \le 40 \text{ GeV}$
$E_{vis}/\sqrt{S} \le 0.95$	$E_{vis}/\sqrt{S} \le 0.90$
$\theta_{qq}, \theta_{\tau\tau} \ge 70^{\circ}$	$\theta_{qq}, \theta_{\tau\tau} \ge 70^{\circ}$
$25 \leq M_{qq}, M_{\tau\tau} \leq 125 \text{ GeV}$	$25 \leq M_{qq}, M_{\tau\tau} \leq 125 \text{ GeV}$
no 3-3 prong decay	no 3-3 prong decay
$N_{\tau} \ge 2$	$\theta_{jj}^{min} \ge 25^{\circ}$
	$ \cos\theta_{miss} \le 0.9$

• N-1 plots of Tau channel

• Distributions used to construct final discriminant.

 \Rightarrow Compute the probability density function f_i^i ,

j means event class(hA, WW, ZZ, qq etc.), i denotes certain variables(b-tag, 2-jet mass etc.).

 \Rightarrow Derive figure of merit for event class j based only on variable i is defined as:

$$P_j^i = \frac{f_j^i}{\sum_k f_k^i} \tag{1}$$

 \Rightarrow Compute final event discriminant based on all variables and assume hA event class:

$$F_{hA} = \frac{\prod_{i} P_{hA}^{i}}{\sum_{k} \prod_{i} P_{k}^{i}}$$
(2)

Run # 865210 Event # 280 Total Energy : 143.63 GeV

• $F_{hA} = 0.91, B_{tag1} = 0.965, B_{tag2} = 0.359,$ $M_{jj} = 90.68 \text{ GeV}, M_{\tau\tau} = 98.28 \text{ GeV}.$ $\Rightarrow e^+e^- \to hA, h \to b\bar{b},$ $A \to \tau^+\tau^-(\tau^\pm \to \mu^\pm \nu \bar{\nu})$

	ALEPH	DELPHI	L3	OPAL		
Inte. Lumi. (pb^{-1})	217	224	217	205		
$hA \rightarrow b\bar{b}\tau^+\tau^-$ channel						
Data	3	5	2	5		
Total Background	3.0	6.0	3.2	4.5		
4-fermion Bkgd.	2.8	5.6	2.9	4.1		
$qar{q}$ Bkgd.	0.2	0.4	0.3	0.4		
Efficiency	41%	25%	33%	43%		
Expected Signal	0.6	0.4	0.4	0.6		

• The signal efficiency and rate are shown for $m_h = m_A = 90 \ GeV/c^2$, with $tan\beta \sim 20$.

• Likelihood Ratio test-statistic:

$$Q = \frac{L(s+b)}{L(b)}$$

• Monte Carlo experiments are based on Poisson statistics.

$$CL_s \equiv \frac{CL_{s+b}}{CL_b}$$

• m_h Maximal Scenario $\Rightarrow m_h$: obs / exp = 83.7 / 88.1 GeV $\Rightarrow m_A$: obs / exp = 83.9 / 88.3 GeV

• m_h maximal scenario, $tan\beta > 20$

 \Rightarrow LEP Combined Results: 91.0 / 94.6 GeV.

\Rightarrow LEP	Combined	Results:	91.9 /	95.0 G	eV.

• No Mixing Scenario

 $\Rightarrow m_h > 91.5 / 95.0 \text{ GeV, for } tan\beta > 1.2$ $\Rightarrow m_A > 92.2 / 95.3 \text{ GeV, for } tan\beta > 1.2$ $\Rightarrow 0.8 < tan\beta < 9.6 \text{ is excluded}$

• Large μ Scenario

• h^0 decays into $c\bar{c}, gg, W^+W^-$ etc.

• Three final states: hadronic, semi-leptonic and leptonic decays.

• H^{\pm} semi-leptonic decays.

• H^{\pm} hadronic decays.

• 10% of H^{\pm} decay into τ .

 \Rightarrow Apparent excess at 68 GeV

 \Rightarrow 4.2 σ excess at 68 GeV from L3.

But

 $\Rightarrow \operatorname{Br}(H^{\pm} \to \tau \nu = 0.0), M_{H^{\pm}} > 77.2 \ (77.1) \ \operatorname{GeV}.$ $\Rightarrow \operatorname{Br}(H^{\pm} \to \tau \nu = 0.1), M_{H^{\pm}} > 66.9 \ (76.0) \ \operatorname{GeV}.$ $\Rightarrow \operatorname{Br}(H^{\pm} \to \tau \nu = 0.5), M_{H^{\pm}} > 69.7 \ (75.7) \ \operatorname{GeV}.$ $\Rightarrow \operatorname{Br}(H^{\pm} \to \tau \nu = 1.0), M_{H^{\pm}} > 82.7 \ (84.6) \ \operatorname{GeV}.$

\Rightarrow LEP Combined Data agree well with SM backgrounds

 $\Rightarrow M_{H^{\pm}} > 78.6 \text{ GeV} \text{ at } 95\% \text{ C.L.}$

• More than $200 \, pb^{-1}$ data were collected per experiment in the Year 2000. In total ~ 700 pb^{-1} were collected above Z^0 pole by each experiment.

 \Rightarrow No significant evidence of MSSM neutral and charged Higgs are observed up to $\sqrt{s} = 209 \text{ GeV}$.

 \Rightarrow Neutral Higgs limits with 95% C.L.

 $m_h > 91.0 \; {
m GeV}, m_A > 91.9 \; {
m GeV}$

 $\tan\beta$ is excluded from 0.5 to 2.4

 \Rightarrow Charged Higgs limits with 95% C.L.

 $m_{H^\pm}>78.6~{\rm GeV}$