

MiniBooNE First Results (1998-2007)

Hai-Jun Yang University of Michigan

IHEP, Beijing July 20, 2007

Outline

- Brief introduction of neutrino
- Physics Motivation of MiniBooNE
- MiniBooNE Neutrino Beam
- Events in the Detector
- Event Reconstruction and Particle ID
- Two Independent Analyses
- Errors, Constraints
- MiniBooNE Initial Results

The Standard Model

1900s:	e discovered (cathode ray tube)
	γ interpreted as a particle
1930s:	μ discovered (cosmic rays)
1950s:	v_{e} observed (nuclear reactor)
	v_{μ} discovered (BNL)
1960s:	1 st evidence for quarks
	u and d observed (SLAC)
	s observed (BNL)
1970s:	standard model is born
	c discovered (SLAC, BNL)
	τ observed (SLAC)
	b observed (FNAL)
1980s:	W and Z observed (CERN)
1990s:	t quark observed (FNAL)
2000s:	v_{τ} observed (FNAL)

About Neutrinos or "*little neutral ones*"

postulated to exist by Wolfgang Pauli in 1930 in order to explain the missing energy in nuclear beta decay

"desperate way out"

electrically neutral weakly interacting extremely light or perhaps massless

They call it the weak force for a reason!

neutrinos interact 100,000,000,000 times less often than quarks

A neutrino has a good chance of traveling through 200 earths before interacting at all!

Detecting Neutrinos

Seeing *neutral* particles is <u>really</u> hard, but when vs interact via the ``Charged Current Interaction," a v goes in, and its *charged* partner particle comes out

...by observing the charged particle partner, one can **infer** the neutrino flavor

Detecting Charged Particle Partners

Charged particles passing through material can produce visible light via Cherenkov radiation Wavefront

Particle track

- Light emitted by material if particle v > c / n
- Similar to a sonic boom

Example: the MiniBooNE Detector

4-story tall spherical tank, filled with oil, lined with photo-multiplier tubes (PMTs)

0.07 0.06 0.05 0.04 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.05

Cos(θ)

0.0

PMTs detect photons from v-interaction induced light emission in oil, record time of arrival and number of photons

Reconstruct particle tracks from time and angular distributions

Photo-Multiplier Tubes

number of photons = $10^{-8} x$ number of electrons out

the intersection of the Cherenkov light cone from the charged particle partner with the spherical detector wall produces a characteristic ellipsoid

Where Are We Now?

deficit and ``images" sun SuperK sees evidence of atmospheric neutrino oscillations Nobel prize for anti-v discovery LSND sees possible indication of oscillation signal Nobel prize for discovery of distinct flavors Kamioka II and IMB see supernova neutrinos Kamioka II and IMB see atmospheric neutrino anomaly SAGE and Gallex see the solar deficit LEP shows 3 active flavors Kumioka II confirms solar deficit Pauli Fermi's 2 distinct flavor identified Predicts theory Reines & Cowan of weak discover the Davis discovers the solar deficit Neutrino interactions (anti) neutrino 1955 1980 2005 1930

K2K confirms atmospheric oscillations

KamLAND confirms solar oscillations Nobel Prize for neutrino

astroparticle physics

oscillation to active flavor

SNO shows solar

SuperK confirms solar

The LSND Experiment

LSND took data from 1993-98

Nearly 49000 Coulombs of protons on target

Baseline: 30 meters

Neutrino Energy: 20-55 MeV

LSND Detector:

-- 1280 phototubes

-- 167 tons Liquid Scintillator

Observe an excess of \overline{v}_e : -- 87.9 ± 22.4 ± 6.0 events.

LSND Collab, PRD 64, 112007

The LSND Experiment

→ LSND observed a positive signal(~3.8 σ), but not confirmed.

Physics Motivation

→ If the LSND signal does exist, it will imply new physics beyond SM.
 → The MiniBooNE is designed to confirm or refute LSND oscillation result at Δm² ~ 1.0 eV².

How can there be 3 distinct Δm^2 ?

- Mass Difference Equation: $(m_1^2 - m_2^2) + (m_2^2 - m_3^2) = (m_1^2 - m_3^2)$
- 1. One of the experimental measurements is wrong
- 2. One of the experimental measurements is not neutrino oscillations:
 - \rightarrow Neutrino decay
 - \rightarrow Neutrino production from flavor violating decays
- 3. Additional "sterile" neutrinos involved in oscillation
- 4. CPT violation or CP violation + sterile v's allows different mixing for v's and v bars.

The MiniBooNE Experiment

- Proposed in 1998, operating since 2002
- The goal of the MiniBooNE Experiment: to confirm or exclude the LSND result and extend the explored oscillation parameter space

The MiniBooNE Collaboration

A. A. Aguilar-Arevalo, A. O. Bazarko, S. J. Brice, B. C. Brown,
L. Bugel, J. Cao, L. Coney, J. M. Conrad, D. C. Cox, A. Curioni,
Z. Djurcic, D. A. Finley, B. T. Fleming, R. Ford, F. G. Garcia,
G. T. Garvey, J. A. Green, C. Green, T. L. Hart, E. Hawker,
R. Imlay, R. A. Johnson, P. Kasper, T. Katori, T. Kobilarcik,
I. Kourbanis, S. Koutsoliotas, J. M. Link, Y. Liu, Y. Liu,
W. C. Louis, K. B. M. Mahn, W. Marsh, P. S. Martin, G. McGregor,
W. Metcalf, P. D. Meyers, F. Mills, G. B. Mills, J. Monroe,
C. D. Moore, R. H. Nelson, P. Nienaber, S. Ouedraogo,
R. B. Patterson, D. Perevalov, C. C. Polly, E. Prebys, J. L. Raaf,
H. Ray, B. P. Roe, A. D. Russell, V. Sandberg, R. Schirato,
D. Schmitz, M. H. Shaevitz, F. C. Shoemaker, D. Smith, M. Sorel,
P. Spentzouris, I. Stancu, R. J. Stefanski, M. Sung, H. A. Tanaka,

 R. Tayloe, M. Tzanov, M. O. Wascko, R. Van de Water, D. H. White, M. J. Wilking, H. J. Yang, G. P. Zeller, E. D. Zimmerman

2 National Laboratories, 14 Universities, 77 Researchers

University of Alabama Bucknell University University of Cincinnati University of Colorado Columbia University Embry Riddle University Fermi National Accelerator Laboratory Indiana University Los Alamos National Laboratory Louisiana State University University of Michigan Princeton University Saint Mary's University of Minnesota Virginia Polytechnic Institute Western Illinois University Yale University

MiniBooNE aims to address 2 of 11 Greatest Unanswered Questions in Physics in 21st Century(Discover, 2002) What is dark matter? Do Neutrinos have mass?

4. Do neutrinos have mass?

Cosmology tells us that neutrinos must be abundantly present in the universe today. Physicists have recently found increasing evidence that they have a small mass. There may even be additional types of neutrinos beyond the three of the current standard models.

First results released from the <u>Sudbury Neutrino Observatory (SNO)</u> in Canada, combined with results of the <u>Super-Kamiokande</u> experiment in Japan, explain the missing solar neutrinos and add to the growing evidence that neutrinos have mass. Both experiments are international efforts with substantial support from DOE.

A long baseline neutrino detection experiment called <u>MINOS</u> is currently being assembled at Fermilab and in Minnesota, and a dedicated beam of neutrinos called <u>NuMI</u> is being built for it. With this new facility, Fermilab will have the opportunity to confirm early indications that the neutrino has a small mass and, if it does, to make

precise mass measurements.

The Equid Scintillator Neutrino Detector (LSND) at Los Alamos found evidence in 1995 that muon neutrinos change into electron neutrinos. A new detector at Fermilab called <u>MiniBooNE</u> will investigate this phenomenon, collecting much more data than LSND due to a stronger neutrino beam. The MiniBooNE neutrino beam will consist of high-intensity pulses about 10,000 times shorter than the LSND beam. This greatly improves the experiment's capability of separating beam-induced neutrino events from naturally occurring cosmic-ray nteractions, which take place at random times.

1. What is dark matter?

Astronomers have shown that the objects in the universe from galaxies a million times smaller than ours to the largest clusters of galaxies are held together by a form of matter that is not what we are made of and that gives off no light. This matter probably consists of one or more as-yet-undiscovered elementary particles, and aggregations of it produce the gravitational pull leading to the formation of galaxies and large-scale structures in the universe. At the same time these particles may be streaming through our Earth-bound laboratories.

Recent results from accelerator experiments at the <u>Liquid</u> <u>Scintillator Neutrino Detector (LSND)</u> at DOE's <u>Los Alamos</u> <u>National Laboratory</u> and underground detectors, <u>Sudbury</u> <u>Neutrino Observatory (SNO)</u> in Canada and <u>Super-Kamiokande</u> in Japan, give strong evidence that neutrinos "oscillate" among various types and must therefore have mass. Although it is a very small mass, the vast numbers of neutrinos in the universe could add up to a substantial total mass and contribute to dark matter in part. New accelerator experiments, <u>MiniBooNE</u> and <u>MINOS</u> at DOE's <u>Fermi National Laboratory</u>, will study neutrino oscillations and mass.

The Sudbury Neutrino Observatory (SNO) in its underground cavern.

MiniBooNE getector

MiniBooNE Neutrino Beam

Fermilab Proton Booster

 4×10^{12} protons per 1.6 µs pulse delivered at up to 5 Hz.

 6.3×10^{20} POT delivered.

Results correspond to $(5.58\pm0.12) \times 10^{20}$ POT

MiniBooNE extracts beam from the 8 GeV Booster

Delivered to a 1.7λ Be target

within a magnetic horn (2.5 kV, 174 kA) that (increases the flux by ×6)

The MiniBooNE Experiment

- The FNAL Booster delivers 8 GeV protons to the MiniBooNE beamline.
- The protons hit a 71cm beryllium target producing pions and kaons.
- The magnetic horn focuses the secondary particles towards the detector.
- The mesons decay into neutrinos, and the neutrinos fly to the detector, all other secondary particles are absorbed by absorber and 450 m dirt.
- 5.6E20 POT for neutrino mode since 2002.
- Switch horn polarity to run anti-neutrino mode since January 2006.

MiniBooNE Flux (Geant 4 Simulation)

Antineutrino content: 6%

The intrinsic v_e is ~0.5% of the neutrino Flux, it's one of major backgrounds for $v_{\mu} \rightarrow v_{\epsilon}$ search.

Modeling Production of Secondary Pions

- E910 @ BNL + previous world data fits
 - Basis of current MB π production model
- HARP @ CERN, 8.9 GeV Proton Beam
 - Measure π production - 5% λ Beryllium target

Modeling Production of Secondary Kaons

K⁺ Data from 10 - 24 GeV. Uses a Feynman Scaling Parameterization.

data -- points
dash --total error
(fit ⊕ parameterization)

K⁰ data are also parameterized.

In situ measurement of K⁺ from LMC agrees within errors with parameterization

Measurement of K⁺ from LMC

- Little Muon Counter (LMC)
 - K decays produce wider angle μ than π decays
 - Scintillating fibre tracker 7 degrees off axis

Stability of Running

number of neutrinos candidates in minute

Events in the Detector

The MiniBooNE Detector

MiniBooNE Detector

- 12m diameter tank
- Filled with 800 tons of ultra pure mineral oil
- Optically isolated inner region with 1280 PMTs
- Outer veto region with 240 PMTs.

10% Photocathode coverage

Two types of Hamamatsu Tubes: R1408, R5912

Charge Resolution: 1.4 PE, 0.5 PE

Time Resolution 1.7 ns, 1.1ns

Optical Model

Attenuation length: >20 m @ 400 nm

Detected photons from

- Prompt light (Cherenkov)
- Late light (scintillation, fluorescence) in a 3:1 ratio for β ~1

We have developed 39-parameter "Optical Model" based on internal calibration and external measurement

Cerenkov and Scintillation Light

Beam Window

A 19.2 µs beam trigger window encompasses the 1.6 µs spill Multiple hits within a ~100 ns window form "subevents" Most events are from v_{μ} CC interactions (v+n $\rightarrow \mu$ +p) with characteristic two "subevent" structure from stopped $\mu \rightarrow v_{\mu}v_{e}e$

Cuts to Select Neutrino Events

Raw data

Veto<6 removes through-going cosmics

This leaves "Michel electrons" $(\mu \rightarrow \nu_{\mu}\nu_{e}e)$ from cosmics Tank Hits > 200 (equivalent to energy) removes Michel electrons, which have 52.8 MeV endpoint

Calibration Sources

Nuance MC Event Rates

CCQE Events

 $\frac{\text{nts}}{p} p$

CCQE (Charged Current Quasi-Elastic) 39% of total

- Events are "clean" (few particles)
- Energy of the neutrino can be reconstructed

$$E_{\nu}^{QE} = \frac{1}{2} \frac{2M_p E_{\ell} - m_{\ell}^2}{M_p - E_{\ell} + \sqrt{(E_{\ell}^2 - m_{\ell}^2)} \cos\theta_{\ell}}$$

Reconstructed from: Scattering angle Visible energy (E_{visible})

An oscillation signal is an excess of v_e events as a function of E_v^{QE}

Nuance Parameters

From Q² fits to MB ν_{μ} CCQE data: M_A^{eff} -- effective axial mass E_{lo}^{SF} -- Pauli Blocking parameter

From electron scattering data: E_b -- binding energy p_f -- Fermi momentum

Events Producing Pions

 $CC\pi^+$

Easy to tag due to 3 subevents. Not a substantial background to the oscillation analysis.

(also decays to a single photon with 0.56% probability)

$NC\pi^0$

The π^0 decays to 2 photons, which can look "electron-like" mimicking the signal...

<1% of π^0 contribute to background.

MiniBooNE Event Types

Muons: Produced in most CC events. Usually 2 subevent or exiting.

Electrons: Tag for $\nu_{\mu} \rightarrow \nu_{e}$ CCQE signal. 1 subevent

π^0 s:

Can form a background if one photon is weak or exits tank. In NC case, 1 subevent.

Two Independent Analyses

Analysis Goal

Minimize background & Maximize signal efficiency.

"Signal range" is about $300 \text{ MeV} < E_v^{\text{QE}} < 1500 \text{ MeV}$

One can then either:

- look for a total excess ("counting experiment")
- fit for both an excess and energy dependence ("energy fit")

Blindness Analysis

MiniBooNE is searching for a small but distinctive event signature (electron)

In order to maintain blindness,

Electron-like events were sequestered,

Leaving ~99% of the in-beam events available for study.

Rule for cuts to sequester events: $<1\sigma$ signal outside of the box

Low level information which did not allow particle-id was available for all events.

Pre-selection Cuts

Both Algorithms and all analyses presented here share "hit-level pre-cuts":

Only 1 subevent Number of Veto hits < 6 Number of Tank hits > 200

And a radius precut: R<500 cm

(where reconstructed R is algorithm-dependent)

Track-Based (TB) Analysis

Philosophy:

→Uses detailed, direct reconstruction of particle tracks, and ratio of fit likelihoods to identify particles.

Each event is characterized by 7 reconstructed variables: vertex (*x*,*y*,*z*), time, energy, and direction (θ , ϕ) \Leftrightarrow (U_x , U_y , U_z).

Resolutions: vertex: 22 cm direction: 2.8° energy: 11%

e / μ Separation

 $log(L_e/L_{\mu})>0$ favors electron-like hypothesis

Note: photon conversions are electron-like. This does not separate e/π^0 .

Separation is clean at high energies where muon-like events are long.

Analysis cut was chosen to maximize the $v_{\mu} \rightarrow v_{e}$ sensitivity

e / π^0 Separation

Cuts were chosen to maximize $v_{\mu} \rightarrow v_{e}$ sensitivity

Testing e / π^0 Separation using data

Summary of Track-Based Cuts

"Precuts" +

Efficiency:

Boosted Decision Trees (BDT) Analysis

Philosophy:

→Construct a set of low-level analysis variables which are used to make a series of cuts to classify the events – decision tree.

➔Boosted Decision Trees combine many trees (weak classifiers) to build a powerful committee to improve signal efficiency.

Reconstructed quantities which are inputs to E_v^{QE}

Many Variables → A Single PID Variable Boosted Decision Trees

"A procedure that combines many weak classifiers to form a powerful committee"

Byron P. Roe, Hai-Jun Yang, Ji Zhu *et al.*, NIM A543 (2005) 577, physics/0408124 Hai-Jun Yang, Byron P. Roe, Ji Zhu, NIM A555 (2005) 370, physics/0508045 Hai-Jun Yang, Byron P. Roe, Ji Zhu, NIM A574 (2007) 342, physics/0610276

A set of decision trees can be developed, each re-weighting the events to enhance identification of backgrounds misidentified by earlier trees ("boosting")

For each tree, the data event is assigned

+1 if it is identified as signal,

-1 if it is identified as background.

The total for all trees is combined into a "score"

BDT Efficiency and backgrounds after cuts:

Analysis cuts on PID score as a function of Energy

Errors and Constraints

We have two categories of backgrounds:

Predictions of the backgrounds are among the nine sources of significant error in the analysis

Source of Uncertainty On v _e background	Track Based /Boosted Decision Trees error in %	Checked or Constrained r by MB data	Further reduced by tying v_{o} to v_{u}
Flux from π^+/μ^+ decay	6.2 / 4.3		$\frac{\nu}{\sqrt{2}}$
Flux from K ⁺ decay	3.3 / 1.0	\checkmark	
Flux from K ⁰ decay	1.5 / 0.4	\checkmark	\checkmark
Target and beam models	2.8 / 1.3	\checkmark	
v-cross section	12.3 / 10.5	\checkmark	\checkmark
NC π^0 yield	1.8 / 1.5	\checkmark	
External interactions ("Dirt")	0.8 / 3.4	\checkmark	
Optical model	6.1 / 10.5	\checkmark	\checkmark
DAQ electronics model	7.5 / 10.8	\checkmark	

Data/MCBoosted Decision Tree: 1.22 ± 0.29 Track Based: 1.32 ± 0.26

Tying the v_e background and signal prediction to the v_{μ} flux constrains this analysis to a strict $v_{\mu} \rightarrow v_e$ appearance-only search

v_{μ} constraint on intrinsic v_{e} from π^{+} decay chains

K⁺ and K⁰ Decay Backgrounds

At high energies > 1.5 GeV, above "signal range" v_{μ} and " v_{e} -like" events are largely due to kaon decay

By measuring high energy box events (>1.5 GeV) to estimate K^+ & K^0 production rate.

We constrain π^0 production using data from our detector

Other Single Photon Sources

Neutral Current: $v + N \rightarrow v + N + \gamma$ negligibleFrom Efrosinin, hep-ph/0609169,
calculation checked by Goldman, LANLnegligible

Charged Current < 6 events @ 95% CL $\nu + N \rightarrow \mu + N' + \gamma$ where the presence of the γ leads to mis-identification

Use events where the μ is tagged by the michel e^{-,} study misidentification using BDT algorithm.

External Sources of Background

"Dirt" Events v interactions outside of the detector $N_{data}/N_{MC} = 0.99 \pm 0.15$

Cosmic Rays: Measured from out-of-beam data: 2.1 ± 0.5 events

Summary of predicted backgrounds for the final MiniBooNE result

Process	Number of Events
ν_{μ} CCQE	10
$ u_{\mu}e ightarrow u_{\mu}e$	7
Miscellaneous ν_{μ} Events	13
NC π^{0}	62
$NC \Delta \rightarrow N\gamma$	20
NC Coherent & Radiative γ	< 1
Dirt Events	17
ν_e from μ Decay	132
ν_e from K^+ Decay	71
ν_e from K_L^0 Decay	23
ν_e from π Decay	3
Total Background	358
$0.26\% \nu_{\mu} \rightarrow \nu_{e}$	(example signal) ¹⁶³

Example: Cross Section Uncertainties (Many are common to v_{μ} and v_{e} and cancel in the fit)

M_A^{QE} , e_{lo}^{sf} QE σ norm QE σ shape v_e/v_μ QE σ	6%, 2% (stat + bkg only) 10% function of E_v function of E_v	determined from MiniBooNE ν _μ QE data
NC π^0 rate M _A ^{coh} , coh σ $\Delta \rightarrow N\gamma$ rate	function of π^0 mom $\pm 25\%$ function of γ mom + 7% BF	determined from MiniBooNE $v_{\mu} NC \pi^{0}$ data
E _B , p _F	9 MeV, 30 MeV	
Δs	10%	determined
$M_A^{1\pi}$	25%	from other
$M_A^{N\pi}$	40%	experiments
DIS σ	25%	

Example: Optical Model Uncertainties

39 parameters must be varied

Allowed variations are set by the Michel calibration sample

To understand allowed variations, we ran 70 hit-level simulations, with differing parameters. \Rightarrow "Multisims" Error Matrix Elements:

$$E_{ij} \approx \frac{1}{M} \sum_{\alpha=1}^{M} \left(N_i^{\alpha} - N_i^{MC} \right) \left(N_j^{\alpha} - N_j^{MC} \right)$$

 ν_{μ}

- N is number of events passing cutsMC is standard monte carlo
- α represents a given multisim
- M is the total number of multisims
- i,j are E_v^{QE} bins

Total error matrix is sum from each source.

TB: v_e -only total error matrix BDT: v_{μ} - v_e total error matrix

The Initial Results

The Track-based $v_{\mu} \rightarrow v_{e}$ Appearance-only Result:

Counting Experiment: 475<E_vQE<1250 MeV

data: 380 events expectation: 358 ± 19 (stat) ± 35 (sys) events

> significance: 0.55 σ

Track Based energy dependent fit results: Data are in good agreement with background prediction.

Best Fit (dashed): $(\sin^2 2\theta, \Delta m^2) = (0.001, 4 \text{ eV}^2)$
As planned before opening the box.... Report the full range: $300 < E_v^{QE} < 3000$ MeV

96 ± 17 ± 20 events above background, for $300 < E_v^{QE} < 475 MeV$

Deviation: 3.7σ

Background-subtracted:

Fit to the > 300 MeV range:

Best Fit (dashed): $(\sin^2 2\theta, \Delta m^2) = (1.0, 0.03 \text{ eV}^2)$ χ^2 Probability: 18%

Boosted Decision Tree Analysis

Counting Experiment: $300 < E_v^{QE} < 1600 \text{ MeV}$ data: 971 events expectation: $1070 \pm 33 \text{ (stat)} \pm 225 \text{ (sys)}$ events significance: -0.38σ

MiniBooNE First Results show no evidence for $\nu_{\mu} \rightarrow \nu_{e}$ appearance-only oscillations

Energy-fit analysis: solid: TB dashed: BDT

Independent analyses are in good agreement.

MiniBooNE first results arXiv:0704.1500 Phys. Rev. Lett. 98, 231801

Future Plans:

Many more papers supporting this analysis will follow, *in the very near future:*

 v_{μ} CCQE production (arXiv:0706.0926) π^{0} production MiniBooNE-LSND-Karmen joint analysis

We are pursuing further analyses of the neutrino data, including...

an analysis which combines TB and BDT, more exotic models for the LSND effect.

We are working hard to understand the low E excess.

MiniBooNE is presently taking data in antineutrino mode.

MiniBooNE First Results Announced at Fermilab on April 11, 2007 (1998-2007)

week ending 8 JUNE 2007

PRL 98, 231801 (2007)

PHYSICAL REVIEW LETTERS

Ś Search for Electron Neutrino Appearance at the $\Delta m^2 \sim 1 \text{ eV}^2$ Scale

A.A. Aguilar-Arevalo,⁵ A.O. Bazarko,¹² S.J. Brice,⁷ B.C. Brown,⁷ L. Bugel,⁵ J. Cao,¹¹ L. Coney,⁵ J.M. Conrad,⁵ D. C. Cox⁸ A. Curioni,¹⁶ Z. Djurcic,⁵ D. A. Finley,⁷ B. T. Fleming,¹⁶ R. Ford, ⁷ F. G. Garcia,⁷ G. T. Garey,⁹ C. Green,⁷⁹ J. A. Green,⁸⁹ T.L. Hart,⁴ E. Hawker,¹⁵ R. Imlay,¹⁰ R.A. Johnson,³ P. Kasper,⁷ T. Katori,⁸ T. Kobilarcik,⁷ I. Kourbanis,⁷ S. Koutsoliotas,² E. M. Laird,¹² J. M. Link,¹⁴ Y. Liu,¹¹ Y. Liu,¹ W. C. Louis,⁹ K. B. M. Mahn,⁵ W. Marsh,⁷ P. S. Martin,⁷ G. McGregor,⁹ W. Metcalf,¹⁰ P. D. Meyers,¹² F. Mills,⁷ G. B. Mills,⁹ J. Monroe,⁵ C. D. Moore,⁷ R. H. Nelson,⁴ P. Nienaber, ¹³ S. Ouedraogo, ¹⁰ R. B. Patterson, ¹² D. Perevalov, ¹ C. C. Polly, ⁸ E. Prebys, ⁷ J. L. Raaf, ³ H. Ray, ⁹ B. P. Roe, ¹¹ A. D. Russell,⁷ V. Sandberg,⁹ R. Schirato,⁹ D. Schmitz,⁵ M. H. Shaevitz,⁵ F. C. Shoemaker,¹² D. Smith,⁶ M. Sorel,⁵ P. Spentzouris,⁷ I. Stancu,¹ R. J. Stefanski,⁷ M. Sung,¹⁰ H. A. Tanaka,¹² R. Tavloe,⁸ M. Tzanov,⁴ R. Van de Water,⁹ M.O. Wascko,¹⁰ D.H. White,⁹ M.J. Wilking,⁴ H.J. Yang,¹¹ G.P. Zeller,⁵ and E.D. Zimmerman⁴

(MiniBooNE Collaboration)

¹University of Alabama, Tuscaloosa, Alabama 35487, USA ²Bucknell University, Lewisburg, Pennsylvania 17837, USA ³University of Cincinnati, Cincinnati, Ohio 45221, USA ⁴University of Colorado, Boulder, Colorado 80309, USA ⁵Columbia University, New York, New York 10027, USA ⁶Embry Riddle Aeronautical University, Prescott, Arizona 86301, USA ⁷Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA ⁸Indiana University, Bloomington, Indiana 47405, USA ⁹Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ¹⁰Louisiana State University, Baton Rouge, Louisiana 70803, USA ¹¹University of Michigan, Ann Arbor, Michigan 48109, USA ¹²Princeton University, Princeton, New Jersey 08544, USA ¹³Saint Mary's University of Minnesota, Winona, Minnesota 55987, USA ¹⁴Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA ⁵Western Illinois University, Macomb, Illinois 61455, USA ¹⁶Yale University, New Haven, Connecticut 06520, USA (Received 20 April 2007; published 8 June 2007)

The MiniBooNE Collaboration reports first results of a search for ν_e appearance in a ν_{μ} beam. With two largely independent analyses, we observe no significant excess of events above the background for reconstructed neutrino energies above 475 MeV. The data are consistent with no oscillations within a twoneutrino appearance-only oscillation model

DOI: 10.1103/PhysRevLett.98.231801

PACS numbers: 14.60.St. 14.60.Lm. 14.60.Pa

an extension of the standard model that allows only three

neutrino mass eigenstates. An explanation of all three mass scales with neutrino oscillations requires the addition of

one or more sterile neutrinos [16] or further extensions of

here is performed within a two-neutrino appearance-only $\nu_{\mu} \rightarrow \nu_{e}$ oscillation model which uses ν_{μ} events to con-

strain the predicted ν_e rate. Other than oscillations between

these two species, we assume no effects beyond the stan-

beam, which is produced from 8 GeV protons incident

on a 71-cm-long by 1-cm-diameter beryllium target. The

proton beam typically has 4×10^{12} protons per ~1.6 μ s

beam spill at a rate of 4 Hz. The number of protons on

target per spill is measured by two toroids in the beam line.

The experiment uses the Fermilab Booster neutrino

The analysis of the MiniBooNE neutrino data presented

This Letter reports the initial results from a search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations by the MiniBooNE Collaboration. MiniBooNE was motivated by the result from the liquid scintillator neutrino detector (LSND) experiment [1], which has presented evidence for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations at the $\Delta m^2 \sim 1 \text{ eV}^2$ scale. Although the Karlsruhe Rutherford medium energy neutrino (KARMEN) experiment observed no evidence for neutrino oscillations [2], a joint analysis [3] showed compatibility at 64% C.L. Evidence for neutrino oscillations also comes from solarneutrino [4-8] and reactor-antineutrino experiments [9], which have observed ν_e disappearance at $\Delta m^2 \sim 8 \times$ 10-5 eV2, and atmospheric-neutrino [10-13] and longbaseline accelerator-neutrino experiments [14,15], which have observed ν_{μ} disappearance at $\Delta m^2 \sim 3 \times 10^{-3} \text{ eV}^2$.

If all three phenomena are caused by neutrino oscillations, these three Δm^2 scales cannot be accommodated in

0031-9007/07/98(23)/231801(7)

231801-1

the standard model (e.g., [17]).

dard model

© 2007 The American Physical Society

Boosted Decision Trees Analysis

UNIVERSITY OF MICHIGAN

NEWS SERVICE

CALL: (734) 764-7260

RELEASES EXPERTS NOTICIAS EN ESPAÑOL PHOTO SERVICES NEWS STAFF BROADCAST U-M IN THE NEWS RESEARCH NEWS

NEWS-E

News in Science Magazine

we would leave other people to worry about it."

Everitt and other scientists on the Gravity Probe B team point out that the experiment has value beyond just measuring relativistic effects. It has produced technical advances already used on other space missions and has provided helpful lessons for planning future precision space probes, such as the proposed LISA mission to measure gravitational radiation from space.

And Will said that the very fact that the mission flew, and worked as well as it did after decades of waiting, should be considered a triumph.

"Everything worked almost perfectly," he said. "A few things didn't work as well. And there are these strange effects that nobody could have imagined beforehand. But that's physics."

Neutrino Study Finds Four's a Crowd

The family of self-effacing subatomic particles known as neutrinos should give up hope for the existence of an eccentric cousin, new results from the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois, suggest.

Physicists know of three types, or "flavors," of neutrino, designated electron, muon, and tau for their associations with other particles with those names. Neutrinos are notoriously difficult to detect and are very nearly massless. They must, however, possess at least a small mass, as they have

CREDIT

shown the ability to switch identity in flight, a trick impossible for massless particles.

These identify shifts, or "flavor oscillations," have been well-established for years. Measurements of the oscillation rate provide clues to the differences in mass among the three known flavors. Such experiments at New Mexico's Los Alamos

National Laboratory in the 1990s implied an unusually large mass difference, hinting that a fourth neutrino flavor ought to exist, in a "sterile" form that does not interact with other particles as ordinary neutrinos do.

Over the past decade, an international team of researchers using a neutrino beam at a Fermilab particle accelerator has sought evidence to confirm or refute the Los Alamos results. If correct, the Los Alamos findings inply that many of the muon neutrinos in the Fermilab beam should oscillate into election neutrinos before reaching a

detector 500 meters away. But the Fermilab experiment, known as MiniBooNE (for "Mini Booster Neutrino Experiment"), found no evidence for the brand of flavor shifting reported at Los Alamos.

"We do not see any evidence for muon neutrinos oscillating into electron neutrinos," Los Alamos physicist Heather Ray, a member of the <u>MiniBooNE</u> team, said at the meeting.

Although apparently ruling out the Los

Alamos evidence for a sterile neutrino, the MiniBooNE experiment turned up a possible new mystery: a higher number of lowenergy electron neutrinos than expected from "background" sources.

"They may be a misestimation of the background, but they may be interesting," said team member Eric Zimmerman of the

No trace. MiniBooNE's sensor array failed to confirm earlier hints of noninteracting "sterile" neutrinos.

University of Colorado, Boulder.

Further analysis of the data and tests of new data now being gathered will be needed to clarify the reason for the lowenergy anomalies, said Janet Conrad of Columbia University, one of the leaders of the MiniBooNE team. "There's still some possibility that there are some bizarre effects going on," she said.

-TOM SIEGFRIED

Tom Siegfried is a writer in Los Angeles, California.

www.sciencemag.org SCIENCE VOL 316 27 APRIL 2007 Published by AAAS

45

NATURE Vol 447 3 May 2007

Neutrinos belong to the class of elementary particles known as leptons. The electron is the most familiar lepton, but is merely a member of the lightest of --according to the standard model of particle physics - three families. Equivalent to the electron in every way except its mass (which is more than 200 times greater than the electron's 0.511 megaelectronvolts) is the muon; nearly 3,500 times as massive is the monstrous tau. Each of these three has its antimatter equivalent, which has an opposite electric charge of +1. The six charged leptons each have an uncharged, almost massless counterpart - the three neutrinos, Whether neutrinos do have mass and, if so, how much of it, is of considerable interest both to particle physicists, for the development of 'grand unified

Universe's mass, and their mass has a significant effect on how the matter in the Universe is distributed. If neutrinos do have mass, then it is possible that neutrino states will oscillate. An electron neutrino. for instance, might spontaneously change into a muon neutrino, and back again in a regular rhythm The larger the difference in neutrino masses, the shorter the distance over which this will happen. The idea was originally invented to explain why, in pioneering measurements made by Ray Davis in the 1960s, far fewer neutrinos were seen coming from the Sun

than models of the nuclear-fusion

processes taking place there

. demanded

theories', and to cosmologists.

Kamiokande detector in Japan Neutrinos are one component of the invisible 'dark matter' that showed that the flux of neutrinos makes up roughly a third of the resulting from collisions of cosmic rays with Earth's atmosphere varies with direction. This convinced most physicists that neutrino oscillations had clearly been seen. In 2001, the Sudbury Neutrino Observatory in Ontario, Canada, showed⁵ that the Sun emits neutrinos other than electron neutrinos, which is verv difficult to explain except through oscillations These results were further strengthened by the KamLAND experiment, which observed⁶ the apparent disappearance of electron antineutrinos from power reactors in Japan as they

before significant numbers of them decay, and

also - unlike the LSND and KARMEN experi-

ments - using a higher-energy pion beam,

which produces a clean differentiation in energy

The muon neutrino beam propagates for

around 500 metres before hitting a detector

consisting of 1,520 light-sensitive photomulti-

plier tubes embedded in a 12-m-diameter tank

of mineral oil. The charged particles resulting

from neutrino interactions travel faster than

the speed of light in the oil, resulting in the

emission of a characteristic cone of 'Čerenkov'

between the different sources of neutrinos.

In 1998, results from the Super

oscillated into muon and tau

antineutrinos, which the detector

MINOS (ref. 8) experiments saw

could not see. The K2K (ref. 7) and

a similar apparent disappearance of muon neutrinos from beams that had propagated for hundreds of kilometres through the ground. Collectively, these experiments have built a case for the oscillation of atmospheric and solar neutrinos that looks almost bullet-proof. These oscillations determine the two independent mass differences that exist between the three neutrino types: both are found to be much less than 1 electronvolt. The results from five years of data-taking at the LSND experiment1 were distinguished by finding a much larger mass difference of around 1 electronyolt If confirmed, this would wreck the simple explanation of the other experiments in terms of neutrino oscillations, and require much more complicated physics. But is it right? The MiniBooNE experiment aimed to find out. D.W

jet breaking the sound barrier. The detection of this light allows the particle's energy and position to be measured, and one type of neutrino to be distinguished from another through its characteristic interactions (Fig. 2).

The analysis of the data2 is complicated, partly owing to physics and partly to psychology. The physics complication lies in the number of background signals that mimic the real one. Added together, these outnumber the postulated 'real' events by two to one. To add to the fun, neutrino cross-sections - the probability that a neutrino will interact in a particular way - are poorly known in the MiniBooNE energy range.

light, rather like the sonic boom produced by a Neutrino oscillation? V (low energy Antineutrino High-energy pion bear oscillation v., v., v. (low energy) $\bigvee \bigvee \overline{v}_{a}$ (high energy

oscillation used a low-energy beam of mainly positively charged pions (π^*). These decay into positive muons (μ^{\dagger}) and muon neutrinos (ν_{μ}) ; the positive muons decay further into positrons (e^{\dagger}) , muon antineutrinos ($\overline{v}_{..}$) and electron neutrinos (v_{e}). The presence of these last electron neutrinos made it difficult to obtain a clean measurement of the oscillation of v_u directly produced in the initial pion decay; instead, the oscillation of \bar{v}_u from the secondary decay into electron antineutrinos (\bar{v}_e) was investigated. A further potential source of confusion is the presence of a small negative-pion (π^{-}) component in the initial pion beam. These pions decay just as do positive pions, but conjugately positive particles are swapped for negative, and antineutrinos for neutrinos, and so on - thus also producing a small number of ve. b, The MiniBooNE experiment uses a high-energy pion beam, and the muons produced in the pion decays are mostly stopped before they can decay further. Oscillation of neutrinos directly produced in the π^* decay can thus be measured cleanly, as these neutrinos are distinguished by their higher energy. Equally, oscillations of antineutrinos from π^- decay can be seen, albeit at a slower rate - this decay channel remains to be investigated.

©2007 Nature Publishing Group

News in Nature

nature International weekly journal of science

RTICLE PHYSICS Wobbly oscillations

David Wark

Neutrinos seem to oscillate: they change back and forth between one type and another and, by extension, have a tiny mass. But one experiment that predicted a particularly large mass looks to have been mistaken.

When is a discovery not a discovery? When it can't be reproduced, of course. That scientific ground-rule has plagued the members of the LSND (Liquid Scintillator Neutrino Detector) collaboration since they first saw evidence1 for so-called neutrino oscillations. Had the LSND results been confirmed, they would have rewritten much of what we think we know about the ever-elusive neutrinos (Box 1, overleaf). But results just announced² from the MiniBooNE detector at Fermilab, near Chicago,

could prove those earlier results' nemesis.

The story begins in 1996, with observations made by LSND of the decay products of a pion particle beam at the Los Alamos Meson Physics Facility (LAMPF) accelerator in New Mexico. The neutrinos came mainly from the decay of positively charged pions into positive muons and muon neutrinos, and the subsequent decay of these positive muons to positrons (positively charged electrons), muon antineutrinos and electron neutrinos (Fig. 1a, overleaf). What

©2007 Nature Publishing Group

43

a ISND I ow-energy pion beam

and three antineutrinos.

the LSND collaboration found on examining the reaction products was an excess of elecron antineutrinos1 — which are produced where in the positive-pion decay chain. e conclusion was that muon antineutrinos e changing into electron antineutrinos he propagating. This is the process known neutrino oscillation, and is itself by now latively uncontroversial³. But the oscillaions that LSND saw seemed to indicate much larger neutrino mass differences than other experiments had predicted. That was indeed controversial Perhaps the LSND results pointed to some

new physics even more surprising than neutrino oscillations. Many possibilities have been suggested, including the existence of other, 'sterile' neutrino families beyond the three that participate in the interactions of particle physics' standard model. But the first attempt to test the results - KARMEN, a comparable, but slightly less sensitive experiment at the Rutherford Appleton Laboratory in Didcot, England - failed to see any signal, although it could not rule out the LSND claim. A new experiment with much higher rates, and therefore higher sensitivity, was needed to test the LSND claim conclusively.

Thus was born Fermilab's MiniBooNE, so called because it was a scaled-down version of the proposed Booster Neutrino Experiment. In MiniBooNE, a beam of either positive or negative pions decays to form beams of positive or negative muons, and muon neutrinos or antineutrinos, whose oscillations are looked for (Fig. 1b). But the muons also decay, producing, among other things, electron neutrinos and antineutrinos - a potential source of confusion for the oscillation measurement. This is minimized at MiniBooNE by stopping the muons Figure 1| Cleaning up the oscillation signal. a, The controversial LSND evidence for antineutrino

COURIER

www.iop.org

Site Overview

Latest issue

Special Issues

CNL

Archive

Buyer's Guide

Subscribe

Jobs Watch

Advertising

Feedback

Contacts Resources

Search

This Issue | Back Issues | Editorial Staff

News

MiniBooNE solves neutrino mystery

The MiniBooNE Collaboration at Fermilab has revealed its first findings. The results announced on 11 April resolve questions that were raised in the 1990s by observations of the LSND experiment at Los Alamos, which appeared to contradict findings of other neutrino experiments. MiniBooNE now shows conclusively that the LSND results could not be due to simple neutrino oscillation.

The observations made by LSND suggested the presence of neutrino oscillation, but in a region of neutrino mass vastly different from other experiments. Reconciling the LSND observations with the other oscillation results would have required the presence of a fourth, or "sterile" type of neutrino, with properties different from the three standard neutrinos. The existence of sterile neutrinos would indicate physics beyond the Standard Model, so it became crucial to have some independent verification of the LSND results.

The MiniBooNE experiment took data for this analysis from 2002 until the end of 2005 using muon neutrinos produced by the Booster accelerator at Fermilab. The detector consists of a 250,000 gallon tank filled with ultrapure mineral oil, located about 500 m from the point at which the muon neutrinos were produced (*CERN Courier* July/August 2002 p5). A layer of 1280 light-sensitive photomultiplier tubes, mounted

MiniBooNE

Backup Slides

Two points on interpreting our limit

A MiniBooNE-LSND Compatibility Test

$$\chi_0^2 = \frac{(z_{MB} - z_0)^2}{\sigma_{MB}^2} + \frac{(z_{LSND} - z_0)^2}{\sigma_{LSND}^2}$$

- For each Δm^2 , determine the MB and LSND measurement: $z_{MB} \pm \delta z_{MB}$, $z_{LSND} \pm \delta z_{LSND}$ where $z = \sin^2(2\theta)$ and δz is the 1σ error
- For each Δm^2 , form χ^2 between MB and LSND measurement
- Find z_0 that minimizes χ^2 (weighted average of two measurements) and this gives χ^2_{min}
- Find probability of χ^2_{min} for 1 dof;

this is the joint compatibility probability for this Δm^2

MiniBooNE is incompatible with a $v_{\mu} \rightarrow v_{e}$ appearance only interpretation of LSND at 98% CL

"Weak" \rightarrow Powerful Classifier

→ Boosted decision trees focus on the misclassified events which usually have high weights after hundreds of tree iterations. An individual tree has a very weak discriminating power; the weighted misclassified event rate err_m is about 0.4-0.45.

➔ The advantage of using boosted decision trees is that it combines many decision trees, "weak" classifiers, to make a powerful classifier. The performance of boosted decision trees is stable after a few hundred tree iterations.

Ref1: H.J.Yang, B.P. Roe, J. Zhu, "Studies of Boosted Decision Trees for MiniBooNE Particle Identification", physics/0508045, Nucl. Instum. & Meth. A 555(2005) 370-385.

Ref2: H.J. Yang, B. P. Roe, J. Zhu, "Studies of Stability and Robustness for Artificial Neural Networks and Boosted Decision Trees", physics/0610276, Nucl. Instrum. & Meth. A574 (2007) 342-349.

BDT cuts on PID score as a function of energy. We can define a "sideband" just outside of the signal region

BDT cuts on PID score as a function of energy. We can define a "sideband" just outside of the signal region

Boosted Decision Tree E_v^{QE} data/MC comparison:

Step 1:

Convert the "Fundamental information" into "Analysis Variables"

"Physics" = π^0 mass, E_v^{QE} , etc.