A Search for $v_{\mu} \rightarrow v_{\mathrm{e}}$ Oscillation

with MiniBooNE

8 \& Hai-Jun Yang a ce el el

- University of Michigan, Ann Arbor (on behalf of MiniBooNE Collaboration)

The $6^{\text {th }}$ KEK Topical Conference Frontiers in Particle Physics and Cosmology KEK, Tsukuba, Japan, February 6-8, 2007

Outline

\rightarrow Physics Motivation
\rightarrow The MiniBooNE Experiment
\rightarrow Neutrino Beam Flux
\rightarrow Event Reconstruction \& Identification
\rightarrow NuMI / MiniBooNE Data vs. MC
\rightarrow Measurement of Dirt Events
\rightarrow Expected Neutrino Oscillation Result

The LSND Experiment

Signal: $\bar{v}_{e} \mathrm{p} \rightarrow \mathrm{e}^{+} \mathrm{n}$ $\mathrm{n} p \rightarrow \mathrm{~d} \gamma(2.2 \mathrm{MeV})$

The LSND Experiment

\rightarrow LSND observed a positive signal($\sim 3.8 \sigma$), but not confirmed.

$$
P\left(\bar{v}_{\mu} \rightarrow \bar{v}_{e}\right)=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{1.27 L \Delta m^{2}}{E}\right)=(0.264 \pm 0.067 \pm 0.045) \%
$$

Physics Motivation

State of Oscillation Results

- Simplest model has three neutrino mass eigenstates, but...
- Data indicates 3 mass differences
$>\Delta \mathrm{m}_{\text {atm }} \sim 2-3 \times 10^{-3} \mathrm{eV}^{2}$
$>\Delta \mathrm{m}_{\text {sol }} \sim 7 \times 10^{-5} \mathrm{eV}^{2}$
$>\Delta \mathrm{m}_{\text {LSND }} \sim .1-10 \mathrm{eV}^{2}$
$\Delta \mathrm{m}^{2}{ }_{\mathrm{atm}}+\Delta \mathrm{m}^{2}{ }_{\text {sol }} \neq \Delta \mathrm{m}^{2}{ }_{\text {lsnd }}$
\rightarrow If the LSND signal does exist, it will imply new physics beyond SM.
\rightarrow The MiniBooNE is designed to confirm or refute LSND oscillation result at $\Delta \mathrm{m}^{2} \sim 1.0 \mathrm{eV}^{2}$.

How can there be 3 distinct $\Delta \mathrm{m}^{2}$?

- Mass Difference Equation:

$$
\left(m_{1}^{2}-m_{2}^{2}\right)+\left(m_{2}^{2}-m_{3}^{2}\right)=\left(m_{1}^{2}-m_{3}^{2}\right)
$$

1. One of the experimental measurements is wrong
2. One of the experimental measurements is not neutrino oscillations:
\rightarrow Neutrino decay
\rightarrow Neutrino production from flavor violating decays
3. Additional "sterile" neutrinos involved in oscillation
4. CPT violation or CP violation + sterile v 's allows different mixing for v 's and v bars.

The MiniBooNE Experiment

- Proposed in summer 1997, operating since 2002
- The goal of the MiniBooNE Expriment: to confirm or exclude the LSND result and extend the explored oscillation parameter space
- Similar L/E as LSND
- Baseline: L = 451 meters, ~ x15 LSND
- Neutrino Beam Energy: E ~ x (10-20) LSND
- Different systematics: event signatures and backgrounds different from LSND
- High statistics: ~ x5 LSND
- Expected ~ 90\% C.L. for most of LSND allowed region

The MiniBooNE Collaboration

Y.Liu, D.Perevalov, I.Stancu University of Alabama S.Koutsoliotas Bucknell University R.A.Johnson, J.L.Raaf University of Cincinnati
T.Hart, R.H.Nelson, M.Tzanov M.Wilking, E.D.Zimmerman University of Colorado
A.A.Aguilar-Arevalo, L.Bugel L.Coney, J.M.Conrad, Z. Djurcic,
K.B.M.Mahn, J.Monroe, D.Schmitz M.H.Shaevitz, M.Sorel, G.P.Zeller Columbia University
D.Smith

Embry Riddle Aeronautical University
L.Bartoszek, C.Bhat, S.J.Brice
B.C.Brown, D. A. Finley, R.Ford,
F.G.Garcia, P.Kasper, T.Kobilarcik,
I.Kourbanis, A.Malensek, W.Marsh,
P.Martin, F.Mills, C.Moore, E.Prebys,
A.D.Russell, P.Spentzouris,
R.J.Stefanski, T.Williams

Fermi National Accelerator Laboratory
D.C.Cox, T.Katori, H.Meyer, C.C.Polly R.Tayloe

Indiana University

Fermilab Booster

The MiniBooNE Experiment

- The FNAL Booster delivers 8 GeV protons to the MiniBooNE beamline.
- The protons hit a 71 cm beryllium target producing pions and kaons.
- The magnetic horn focuses the secondary particles towards the detector.
- The mesons decay into neutrinos, and the neutrinos fly to the detector, all other secondary particles are absorbed by absorber and 450 m dirt.
- 5.579E20 POT for neutrino mode since 2002.
- Switch horn polarity to run anti-neutrino mode since January 2006.

MiniBooNE Flux

8 GeV protons on Be target gives:

$$
\mathrm{p}+\mathrm{Be} \rightarrow \pi^{+}, \mathrm{K}^{+}, \mathrm{K}_{\mathrm{L}}^{0}
$$

v_{μ} from:
$\pi^{+} \rightarrow \mu^{+} v_{\mu} \quad \mathrm{K}^{+} \rightarrow \mu^{+} v_{\mu} \quad \mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{-} \mu^{+} v_{\mu}$
Intrinsic v_{e} from:

$$
P\left(v_{\mu} \rightarrow v_{e}\right)=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{1.27 L \Delta m^{2}}{E}\right)
$$

$$
L(m), E(M e V), \Delta m^{2}\left(e V^{2}\right)
$$

Understanding Neutrino Flux (I)

- E910 @ BNL + previous world data fits
- Basis of current MiniBooNE π production model
- HARP @ CERN, 8 GeV Proton Beam
- MiniBooNE target slug - thin target (5, 50, $100 \% \lambda$)
- Measure π^{+}production

Understanding Neutrino Flux (II)

- Little Muon Counter (LMC)
- Scintillating fibre tracker 7 degrees off axis
- K decays produce wider angle μ than π decays
- K production is deduced by measuring off-axis μ

The MiniBooNE Detector

MiniBooNE Detector

- 12m diameter tank
- Filled with 800 tons of pure mineral oil
- Optically isolated inner region with 1280 PMTs
- Outer veto region with 240 PMTs.

PMT

Timing Distribution for Laser Events (new tubes)

Energy Calibration

\rightarrow Michel e from μ decay: low energy 52.8 MeV .

$\rightarrow \pi^{0}$ mass peak: calibrate medium energy, photons decay from π^{0} ranging $50 \sim 400 \mathrm{MeV}$
\rightarrow cosmic ray $\mu+$ tracker + cubes: calibrate μ energy ranging from $100 \sim 800 \mathrm{MeV}$

Neutrino Candidates

- DAQ triggered on beam from Booster
- Detector read out for $19.2 \mu \mathrm{~s}$
- Neutrino pulse through detector lasts $1.6 \mu \mathrm{~s}$
- 1.09 neutrino candidates / 1E15 POT
- With a few very simple cuts (time window, tank/veto hits) to obtain pure neutrino events.

2/6/2007

H.J. Yang - MiniBooNE

Event Topology

Cerenkov Light...

18

Event Reconstruction

- To reconstruct event position, direction, time, energy and invariant mass etc.
- Cerenkov light - prompt, directional
- Scintillation light - delayed, isotropic
- Using time likelihood and charge likelihood method to determine the optimal event parameters.
- Two parallel reconstruction packages
- S-Fitter is based on a simple, point-like light source model;
- P-Fitter differs from S-Fitter by using more $0^{\text {th }}$ approximation tries, adding e/ μ tracks with longitudinally varying light source term, wavelength-dependent light propagation and detection, non-point-like PMTs and photon scattering, fluorescence and reflection.

Particle Identification

Two complementary and parallel methods:

- Log-likelihood technique:
- simple to understand, widely used in HEP data analysis
- Boosted Decision Trees:
- Non-linear combination of input variables
- Great performance for large number of input variables (about two hundred variables)
- Powerful and stable by combining many decision trees to make a "majority vote"

Boosted Decision Trees

\square
 How to build a decision tree ?

For each node, try to find the best variable and splitting point which gives the best separation based on Gini index. Gini_node $=$ Weight_total* ${ }^{*}(1-P), P$ is weighted purity Criterion = Gini_father - Gini_left_son - Gini_right_son Variable is selected as splitter by maximizing the criterion.

How to boost the decision trees?

Weights of misclassified events in current tree are increased, the next tree is built using the same events but with new weights, Typically, one may build few hundred to thousand trees.

\square How to calculate the event score?

For a given event, if it lands on the signal leaf in one tree, it is given a score of 1 , otherwise, -1 . The sum (probably weighted) of scores from all trees is the final score of the event.

Performance vs Number of Trees

\rightarrow Boosted decision trees focus on the misclassified events which usually have high weights after hundreds of tree iterations. An individual tree has a very weak discriminating power; the weighted misclassified event rate $\operatorname{err}_{\mathrm{m}}$ is about 0.4-0.45.
\rightarrow The advantage of using boosted decision trees is that it combines many decision trees, "weak" classifiers, to make a powerful classifier. The performance of boosted decision trees is stable after a few hundred tree iterations.

Ref1: H.J.Yang, B.P. Roe, J. Zhu, "Studies of Boosted Decision Trees for MiniBooNE Particle Identification", Physics/0508045, Nucl. Instrum. \& Meth. A 555(2005) 370-385.
Ref2: B.P. Roe, H.J. Yang, J. Zhu, Y. Liu, I. Stancu, G. McGregor, "Boosted decision trees as an alternative to artificial neural networks for particle identification", physics/0408124, NIMA 543 (2005) 577-584.

Blindness Analysis

- We do not look into the data region where the v_{e} oscillation candidates are expected.
- We are allowed to use part sample to check the goodness of Monte Carlo modeling
- Some of the information in all of the data
- All of the information in some of the data
\rightarrow To use NuMI sample as an useful cross check
\rightarrow To use v_{μ} background events to study the agreement of Data and Monte Carlo events.

NuMI Sample

Use NuMI beam as a cross check for analysis \rightarrow Event Classification

MiniBooNE sees TWO neutrino beams
(World's $\mathbf{1}^{\text {st }}$ off axis \boldsymbol{v} detector!)

Thesis project: Alexis A. Aguilar-Arévalo

NuMI Sample

NuMI Sample

NuMI Event Classification: Boosted Decision Trees

$1000 \mathrm{MeV} \leq$ Energy $<1500 \mathrm{MeV}$

$1500 \mathrm{MeV} \leq$ Energy
 H.J. Yang - MiniBooNE

1) good data/MC agreement over range of energies
2) Use regions of greatest resolving power to study
e's vs
background

MiniBooNE Data VS. Monte Carlo

cc data(black), dirtmc(red),2SE,thits >200,vhits $<6, R<500 \mathrm{~cm}$

Visible Energy, Tank Hits, Radius
cc data(black), dirtmc(red), 2 SE,thits >200, vhits $<6, R<500 \mathrm{~cm}$

Outputs of Boosted Decision Trees

MiniBooNE Event Rates

$\rightarrow v$ events currently "on-tape" 5.6E20 protons-on-target (POT)

Measurement of Dirt Events

\rightarrow Neutrino beam interacts with dirt outside of tank, the high energy photons ($100 \sim 300 \mathrm{MeV}$) sneak into the tank to produce electron-like Cerenkov ring. \rightarrow N_dirt_measured / N_dirt_expected $=0.99 \pm 0.15$
\rightarrow Dirt events contribute $\sim 10 \%$ of background for oscillation nue search.

Dirt(red),Tank(blue),MC(black),Data(dots)

H.J. Yang - MiniBooNE

Expected Nue Oscillation Events

$$
\text { N_oscnue ~ } 239\left(\Delta \mathrm{~m}^{2}=1.0 \mathrm{eV}^{2}, \sin ^{22} \Theta=0.004\right), \text { N_background } \sim 702, \text { N_dirt ~ } 80
$$

Nue Oscillation Sensitivity

