Impact of ILC Tracker Design on
$e^+e^- \to H^0Z^0 \to \mu^+\mu^- X$ Analysis

Hai-Jun Yang & Keith Riles
University of Michigan, Ann Arbor

ALCPG Workshop at Fermilab
October 22-26, 2007
Physics Motivation

To determine a suitable ILC SiD tracker momentum resolution capable of making a direct measurement of $e^+e^- \rightarrow H^0Z^0 \rightarrow \mu^+\mu^- X$
Cross Section of $H Z \rightarrow \mu^+ \mu^- X$
MC Generator & Analysis Tool

$\rightarrow e^+e^- \rightarrow H^0Z^0 \rightarrow \mu^+\mu^- X$

- Based on ILC350 beam setup
- Polarization of e^- is -85%, e^+ is 0
- PandoraV2.3 (modified for $H \rightarrow \mu^+\mu^-$ decay, thanks to Michael E. Peskin) and PythiaV3.3
- Java Analysis Studio V2.2.5
- SDMar01, Fast MC Simulation and 1000 fb$^{-1}$
- Track momentum resolution for SDMar01
 $$\Delta(1/p_t) = \sqrt{(2*10^{-5})^2 + (7*10^{-4}/p_t/\sqrt{\sin \theta})^2}$$
Monte Carlo Samples

- **Signal** – 10K: $e^+e^- \rightarrow H^0Z^0 \rightarrow \mu^+\mu^- X$
 - M_H=100, 110, 120, 130, 140, 150 GeV
 - Cross sections are 51, 46, 38, 27, 16, 7 ab, respectively.
 - Expected counts are 51, 46, 38, 27, 16, 7 for 1000 fb$^{-1}$
- **Background** $e^+e^- \rightarrow Z^0Z^0 \rightarrow \mu^+\mu^- X$ – 100 K, 31.6 fb
- **Background** $e^+e^- \rightarrow W^+W^- \rightarrow \mu^+\mu^- \nu\nu$ – 400 K, 149.68 fb
- **Background** $e^+e^- \rightarrow Z/\gamma \rightarrow \mu^+\mu^- \gamma$ – 500K, 2574.0 fb
- **Background** $e^+e^- \rightarrow Z\gamma \rightarrow \mu^+\mu^- \gamma$ – 400K, 416.3 fb
- **Background** $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- H$
 - M_H=100, 110, 120, 130, 140, 150 GeV
 - 10K events for each Higgs mass point
Preselection Cuts

- “Good” μ:
 - a) $P_\mu > 20$ GeV
 - b) $|\cos \Theta_\mu| < 0.8$
- At least 2 “Good” μ
- Eff_signal $\sim 62.4\% - 65\%$
Selection Cuts ($M_H = 100$ GeV)

Opening angle between two μ

Polar angle of two μ

![Graph showing opening angle and polar angle distributions.](image)
Selection Cuts ($M_H=120$ GeV)

Opening angle between two μ

Polar angle of two μ
Selection Efficiency

| $M_{\mu\mu}$ (GeV) | $\cos\theta_{\mu\mu,\text{opening}}$ | $|\cos\theta_{\mu\mu,\text{polar}}|$ | Eff | $Z\nu\mu$ | ZZ | WW | $\mu\mu$ | $Z\gamma$ | $Z(\mu\mu)H$ |
|-----------------|------------------------------------|--------------------------------|-----|-----------|-----|-----|-------|-------|-------------|
| 100 ± 1 | > −0.2 | < 0.6 | 37.6% | 19.3 | 76.6 | 3.4 | 0.0 | 1.04 | 17.0 |
| 110 ± 1 | > −0.2 | < 0.6 | 34.7% | 15.9 | 19.4 | 0.0 | 0.0 | 0.0 | 4.2 |
| 120 ± 1 | > −0.3 | < 0.7 | 36.6% | 13.9 | 8.95 | 1.12| 0.0 | 0.0 | 1.5 |
| 130 ± 1 | > −0.4 | < 0.7 | 34.3% | 9.4 | 2.5 | 4.5 | 0.0 | 0.0 | 0.9 |
| 140 ± 1 | > −0.4 | < 0.7 | 28.0% | 4.5 | 0.5 | 2.8 | 0.0 | 0.0 | 0.8 |
| 150 ± 1 | > −0.4 | < 0.8 | 24.3% | 1.8 | 0.0 | 1.24| 0.0 | 0.0 | 0.0 |

→ Lower efficiency for higher Higgs mass, which is mainly caused by wider opening angle between $\mu\mu$ decay from Higgs.
M_{\mu\mu} vs Track Momentum Resolution

ILC350, SDMar01, Z→all, H→\mu\mu, 1000 fb^{-1}

Events / 10 MeV

Rescaling factor of Δ(1/p_{t})

- × 0.05
- × 0.10
- × 0.15
- × 0.25
- × 0.50
- × 1.0

M_{H}=100 GeV

M_{H}=120 GeV

Invariant Mass of \mu\mu (GeV)
The $H \rightarrow \mu\mu$ significance is improved with better track resolution.

- Optimize Higgs significance for each Higgs mass point.
Branching Ratio Uncertainty

The detection significance improves significantly with improved momentum resolution, but branching ratio of $H \rightarrow \mu \mu$ improves only modestly.
Higgs Mass Resolution

ILC350, SDMar01, Z→all, H→μμ, 1000 fb⁻¹

![Graphs showing the invariant mass of μμ (GeV) distribution with two different scaling factors (1/\(p_t\) and 0.5)].

- For \(\Delta(1/\(p_t\))*1.0\):
 - \(\chi^2/\text{d.f.}\): 0.1908 / 57
 - Constant: 0.2937
 - Mean: 120.0
 - Sigma: 0.1875

- For \(\Delta(1/\(p_t\))*0.50\):
 - \(\chi^2/\text{d.f.}\): 0.1952 / 37
 - Constant: 0.6086
 - Mean: 120.0
 - Sigma: 0.9157E-01
Higgs Mass Resolution

ILC350, SDMar01, Z→all, H→μμ, 1000 fb⁻¹

ILC350, SDMar01, Z→all, H→μμ, 1000 fb⁻¹

\[\Delta(1/p_t)^*0.25 \]

\[\Delta(1/p_t)^*0.10 \]

<table>
<thead>
<tr>
<th>(\chi^2/\nu)</th>
<th>0.8645E-01/27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.147</td>
</tr>
<tr>
<td>Mean</td>
<td>120.0</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.4826E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\chi^2/\nu)</th>
<th>0.5217E-01/11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.629</td>
</tr>
<tr>
<td>Mean</td>
<td>120.0</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.2089E-01</td>
</tr>
</tbody>
</table>
Better Higgs mass resolution with better track resolution.

Graphs showing the Higgs mass resolution as a function of the Higgs mass for different values of the rescaling factor of $\Delta(1/p_t)$.
Preliminary Conclusions

The SD tracker with nominal track momentum resolution makes it possible but still hard to measure $e^+e^- \rightarrow H^0 Z^0 \rightarrow \mu^+\mu^- X$.

But the direct measurement is feasible (>5 sigma for light Higgs mass ~ 100-140GeV) if the track momentum resolution is improved by a factor of ~ 2 or more.