#### **Search for Higgs Bosons at LEP**

## Haijun Yang

#### University of Michigan, Ann Arbor



#### **On behalf of the L3 Collaboration**

American Physical Society Meeting(APS03), Philadelphia April 5-8, 2003





- Introduction
- Standard Model Higgs
- MSSM Neutral Higgs
- Charged Higgs
- Fermiophobic Higgs
- Invisible Higgs
- Flavour-blind Higgs

NO Higgs bosons are discovered at LEP

# ♠ LEP Higgs Working Group

http://lephiggs.web.cern.ch/LEPHIGGS/www/Welcome.html http://alephwww.cern.ch/WWW/ http://delphiwww.cern.ch/Welcome.html http://l3.web.cern.ch/l3/ http://opal.web.cern.ch/Opal/





**♦** Standard Model(SM) is a theory for massless particles

**But, gauge bosons**(*W*, *Z*) **and fermions do have masses** 

▲ The 'Higgs Mechanism': Particles acquire masses by interaction with the Higgs field

**♦** The Higgs field has quanta - the Higgs bosons

**♦** One Higgs Doublet Model - SM Higgs boson

- **A** Two Higgs Doublets Model, MSSM, ...
- **♦** The Higgs bosons masses are not predicted by theories

Discovery of the Higgs boson(s) is one of the main goals at LEP, Tevatron and LHC





# Global fit to all precision measurements from LEP, SLC, Tevatron, ...









Total Integrated Luminosity: 887  $pb^{-1}$ Center-of-Mass energies:  $\sqrt{s} \simeq 90 - 209$  GeV**12 years operation:** 1989 - 2000











• Common Estimator used at LEP:

$$-2\ln Q \equiv 2\sum_{i} [s_i - n_i \ln(1 + s_i/b_i)]$$

Where  $n_i$ ,  $s_i$ ,  $b_i$  represent observed events, expected Higgs signal and SM background in the *i*-th bin, *i* indicates the *i*-th bin of final discriminant of each channel and at each  $\sqrt{s}$ .

• MC experiments based on Poisson statistics.





# Search for SM Higgs Boson





|        | Expected limit (GeV) | Observed limit (GeV) |
|--------|----------------------|----------------------|
| LEP    | 115.3                | 114.4                |
| ALEPH  | 113.5                | 111.5                |
| DELPHI | 113.3                | 114.3                |
| L3     | 112.4                | 112.0                |
| OPAL   | 112.7                | 112.8                |





|    | Expt $E_{cm}$ |       | Decay channel | $m_{\rm H}^{rec}~({\rm GeV})$ | $\ln(1+s/b)$ |
|----|---------------|-------|---------------|-------------------------------|--------------|
|    |               |       |               |                               | at 115 GeV   |
| 1  | ALEPH         | 206.6 | 4-jet         | 114.1                         | 1.76         |
| 2  | ALEPH         | 206.6 | 4-jet         | 114.4                         | 1.44         |
| 3  | ALEPH         | 206.4 | 4-jet         | 109.9                         | 0.59         |
| 4  | L3            | 206.4 | E-miss        | 115.0                         | 0.53         |
| 5  | ALEPH         | 205.1 | Lept          | 117.3                         | 0.49         |
| 6  | ALEPH         | 206.5 | Taus          | 115.2                         | 0.45         |
| 7  | OPAL          | 206.4 | 4-jet         | 108.2                         | 0.43         |
| 8  | ALEPH         | 206.4 | 4-jet         | 114.4                         | 0.41         |
| 9  | L3            | 206.4 | 4-jet         | 108.3                         | 0.30         |
| 10 | DELPHI        | 206.6 | 4-jet         | 110.7                         | 0.28         |
| 11 | ALEPH         | 207.4 | 4-jet         | 102.8                         | 0.27         |
| 12 | DELPHI        | 206.6 | 4-jet         | 97.4                          | 0.23         |
| 13 | OPAL          | 201.5 | E-miss        | 111.2                         | 0.22         |
| 14 | L3            | 206.4 | E-miss        | 110.1                         | 0.21         |
| 15 | ALEPH         | 206.5 | 4-jet         | 114.2                         | 0.19         |
| 16 | DELPHI        | 206.6 | 4-jet         | 108.2                         | 0.19         |
| 17 | L3            | 206.6 | 4-jet         | 109.6                         | 0.18         |

• For  $m_H = 115 \ GeV$ 

Data = 17, Signal = 8.42 & Background = 15.9





### Large $\mu$ scenario: $m_{\mu 0} < 108 \ GeV$ :





## Search for MSSM Higgs Bosons





| 95% C.L. Limits       | ALEPH       | DELPHI      | L3          | OPAL        |
|-----------------------|-------------|-------------|-------------|-------------|
| obs (exp) - $m_{h^0}$ | 89.8 (91.3) | 89.7 (88.8) | 85.5 (88.5) | 79.3 (85.1) |
| obs (exp) - $m_A$     | 90.1 (91.6) | 90.7 (89.7) | 86.3 (88.6) | 80.6 (86.9) |





Production:  $e^+e^- \rightarrow H^+H^-$  Decay:  $H^{\pm} \rightarrow cs, \tau v$ 



| 95% C.L. Limits | ALEPH       | DELPHI      | L3          | OPAL        |
|-----------------|-------------|-------------|-------------|-------------|
| obs (exp)       | 79.3 (76.9) | 73.8 (75.4) | 66.9 (75.1) | 72.2 (74.5) |





## $e^+e^- \rightarrow Zh, \ h \rightarrow \gamma\gamma$ dominant for $m_h < 90 GeV$



## $m_h > 109.7 \ GeV, BR(h \rightarrow \gamma \gamma) < 6\%$ at 95% C.L.



Search for Fermiophobic Higgs Boson

 $e^+e^- \rightarrow Zh, \ h \rightarrow WW^*, \ ZZ^*$ 



Six channels investigated(~ 93% BR):  $Zh \rightarrow qqqqqq, qqqq\ell\nu, qq\ell\nu\ell\nu, \nu\nu qqqq, \nu\nu qq\ell\nu, \ell\ell qqqq$ 





## Assumption: $h \rightarrow inv.(\tilde{\chi}_1^0 \tilde{\chi}_1^0)$ might dominant

# Signal: $h \rightarrow inv. + Z \rightarrow q\bar{q}, \ \ell^+\ell^-$

two acoplanar jets or leptons  $\bigoplus$  missing energy



 $m_h > 114.4(113.5 exp.)$  GeV at 95% C.L. for  $R_{inv} = 1$ 





## Assumption: $h \rightarrow b\bar{b}$ not necessarily dominant



- Searches not relying on b-tagging
- less model-dependent

 $m_h > 112.9(113 \text{ exp.}) \text{ GeV}$  at 95% C.L.