Measurement of Higgs Mass and Cross Section at NLC

Haijun YangKeith RilesUniversity of Michigan, Ann Arbor

Linear Collider Retreat University of California, Santa Cruz June 27-29, 2002

- MC Generator: PANDORA V2.2, PYTHIAV3.1 Using NLC Beam Energy Spread (1%)
 ⇒ Thanks to Michael E. Peskin, Masako Iwasaki.
- Analysis Platform: JAVA Analysis Studio V2.2.5
 ⇒ Thanks to Tony Johnson, Mike Ronan,
 Wolfgang Walkowiak.
- Full MC comes from SLAC lcddata server
 ⇒ Thanks to Gary Bower, Norman Graf.
- Detectors: LDMAR01(LD), SDMAR01(SD)

•
$$e^+e^- \to ZH \to l^+l^-X(\gamma)$$

 $\sqrt{S} = 350, 500 \text{ GeV}$
 $M_H = 120, 140, 160 \text{ GeV}$
 $\mathcal{L} = 500 f b^{-1}$

• Signal: $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-X(\gamma)$								
$\sqrt{S}(GeV)$	M_H	$\sigma({\rm fb})$	Exp. Events					
350	120	5.19	2590					
350	140	4.37	2185					
350	160	3.61	1805					
500	120	2 (5	1205					
500	120	2.65	1325					
500	140	2.45	1225					
500	160	2.15	1075					

• Background: *ZZ*, *WW* (fast MC only)

$\sqrt{S}(GeV)$	BKGD	σ (fb) E	Exp. Even	its
350	ZZ	878.4	439K	
500	ZZ	561.9	281K	
350	WW	21.8K	11 M	
500	WW	14.3K	7M	

- 1). Energy of l^{\pm} from Track: $E_l > 10 \text{GeV}$
- 2). Polar angle of l^{\pm} : $|\cos(\theta_l)| < 0.9$
- 3). No. of l^{\pm} satisfy 1) & 2): $N_l \ge 2$
- 4). Inv. mass of l^+l^- : $|M_{l^+l^-} M_{Z^0}| < 5$ GeV
- 5). Polar angle of $Z^0(l^+l^-)$: $|\cos(\theta_{l^+l^-})| < 0.6$
- 6). Angle between l^+l^- : $\cos(\theta_{l^+\leftrightarrow l^-}) > -0.7$

Recoil mass of l^+l^- system:

$$M_H = \sqrt{S - 2 \bullet \sqrt{S} \bullet E_{l^+l^-} + M_{l^+l^-}^2}$$

• $e^+e^- \to ZH \to \mu^+\mu^-X(\gamma)$

\sqrt{s}	m_{higgs}	fast MC		full MC	
(GeV)	(GeV)	LD	SD	LD	SD
500	120	55.2	55.2	55.5	49.7
	140	55.4	55.4	55.9	49.6
	160	55.2	55.3	56.8	50.4
350	120	49.9	50.0	48.2	41.2
	140	48.2	48.2	48.6	40.8
	160	48.0	47.9	47.6	38.7

 \Rightarrow At $\sqrt{s} = 500$ GeV, Eff. is ~ 55%.

 \Rightarrow At $\sqrt{s} = 350$ GeV, Eff. is $\sim 48\%$.

 \Rightarrow For full SD, Eff. is degrading 6 ~ 8% because of low track reconstruction efficiency in SD forward region.

Comparison of Pandora V2.1 & V2.2.
Comparison of Fast & Full MC of Pandora V2.2.

NLC500H(Full) - M_h=120 GeV, LDMAR01 NLC500H(Full) - M_h=160 GeV, LDMAR01 4.06817.51 ± 21.96 ± P1 4.165 3.801 P1 60 P2 2.434 122.9 ± P2 162.6 ± 1.074 50 P3 3.600 P3 1.346 8.784 ± 5.870 ± P4 147.5 ± 3.281 P4 -93.67 ± 3.522 50 P5 -1.393 ± 0.2270E-01 P5 $1.817 \pm$ 0.2339E-01 P6 $0.5026E-02 \pm$ 0.8938E-04 P6 -0.8810E-02 ± 0.9100E-04 40 P7 -0.6458E-05 + 0.2405E-06 0.1299E-04 H 0.2442E-06 Events / 2 GeV Events / 2 GeV 40 30 30 20 20 10 10 0 0 100 120 140 160 180 200 220 240 260 280 300 100 120 140 160 180 200 220 240 260 280 300 Z⁰ recoil mass (GeV) Z^0 recoil mass (GeV) NLC500H(Full) - M_h=120 GeV, SDMAR01 NLC500H(Full) - M_h=160 GeV, SDMAR01 P1 17.83 ± 4.015 P1 21.74 ± 3.925 60 P2 $122.2 \pm$ 1.741 P2 $162.4 \pm$ 0.9404 7.092 ± 50 4.926 ± P3 2.486 P3 1.021 P4 33.95 P4 $152.5 \pm$ $-69.34 \pm$ 3.379 P5 0.2222E-01 0.2295E-01 P5 50 -1.469 +1.466 +P6 0.8807E-04 P6 0.5355E-02 ± -0.7209E-02 ± 0.8921E-04 40 0.2398E-06 0.2364E-06 P7 -0.6898E-05 ± P7 0.1063E-04 ± Events / 2 GeV Events / 2 GeV 40 30 30 20 20 10 10 0 0 100 120 140 160 180 200 220 240 260 280 300 100 120 140 160 180 200 220 240 260 280 300 Z^0 recoil mass (GeV) Z^0 recoil mass (GeV)

e⁺e⁻ → ZH → μ⁺μ⁻X(γ) Fitting Function: Gaussian + Polynomial(P3)

e⁺e⁻ → ZH → μ⁺μ⁻X(γ) Fitting Function: Gaussian + Polynomial(P3)

• Gaussian + Polynomial(P3) fit: $\Rightarrow \Delta M_{higgs}$ at 350 GeV: 110~ 160 MeV. $\Rightarrow \Delta M_{higgs}$ at 500 GeV: 600 ~ 1200 MeV.

• Monte Carlo Interpolation Method $\Rightarrow \Delta M_{higgs}$ at 350 GeV: ~ 90 MeV. $\Rightarrow \Delta M_{higgs}$ at 500 GeV: ~ 300 MeV.

• Monte Carlo Interpolation Method $\Rightarrow \Delta \sigma / \sigma \text{ at } 350 \text{ GeV}: \sim 3\%.$ $\Rightarrow \Delta \sigma / \sigma \text{ at } 500 \text{ GeV}: \sim 5.5\%.$

• Fast & Full MC, LDMAR01 & SDMAR01

•
$$e^+e^- \to ZH \to l^+l^-X(\gamma)$$

 $\sqrt{S} = 350, 500 \text{ GeV and } \mathcal{L} = 500 f b^{-1}$
 $M_H = 120, 140, 160 \text{ GeV}$

- Gaussian + Polynomial(P3) fit
 - $\Rightarrow \Delta M_{higgs}$ at 350 GeV: 110~ 160 MeV (*100).
 - $\Rightarrow \Delta M_{higgs}$ at 500 GeV: 600 ~ 1200 MeV(300-400).
 - $\Rightarrow \sigma_{M_{higgs}}$ at 350 GeV: 2.5~ 3.5 GeV(1.6).
 - $\Rightarrow \sigma_{M_{higgs}}$ at 500 GeV: $5 \sim 8$ GeV(3.0).
- MC interpolation method
 - Accuracy of higgs mass
 - $\Rightarrow \Delta M_{hiqgs}$ at 350 GeV: ~ 90 MeV(60).
 - $\Rightarrow \Delta M_{higgs}$ at 500 GeV: ~ 300 MeV(120).
 - Cross section of $e^+e^- \rightarrow ZH \rightarrow l^+l^-X(\gamma)$ $\Rightarrow \Delta\sigma/\sigma \text{ at 350 GeV:} \sim 3\%(3).$ $\Rightarrow \Delta\sigma/\sigma \text{ at 500 GeV:} \sim 5.5\%(4.7).$
 - * numbers in parentheses are for Pandora V2.1.