Update of ILC Tracker Alignment Based on Frequency Scanned Interferometry

University of Michigan ILC Group (Hai-Jun Yang, Alexander Harvey Nitz, Eui Min Jung, Keith Riles)

> ALCPG Workshop, Fermilab October 22-26, 2007

→ Brief reminder of Frequency Scanned Interferometry (FSI) method

→ Review of improvements & measurements of FSI demonstration system

- Implementation of dual-laser technique
- Results of measurements estimated precision
- Cross checks
- Preliminary simulation results: Impact of silicon ladder distortion on charged track momentum reconstruction
- ➔ Ongoing work
 - Miniaturization
 - Multiple channels
 - Detailed simulation based on FSI line-of-sight grid constraint

- Measure hundreds of absolute point-to-point distances of tracker elements in 3 dimensions by using an array of optical beams split from a central laser.
- Absolute distances are determined by scanning the laser frequency and counting interference fringes.
- Grid of reference points overdetermined \rightarrow Infer tracker distortions

• Technique pioneered by Oxford U. group for ATLAS SCT detector

A Possible SiD Tracker Alignment

752 point-to-point distance measurements

(Goal: $\sigma_{distance} < 1 \ \mu m$)

ALCPG@FNAL

The measured distance can be expressed by

$$R = \frac{c\Delta N}{2\overline{n}_g \Delta \nu} + \text{constant end corrections}$$

c - speed of light, $\Delta N - No$. of fringes, Δv - scanned frequency n_g - average refractive index of ambient atmosphere

Assuming the error of refractive index is small, the measured precision is given by:

$$(\sigma_R / R)^2 = (\sigma_{\Delta N} / \Delta N)^2 + (\sigma_{\Delta v} / \Delta v)^2$$

Example: R = 1.0 m, $\Delta v = 6.6 \text{ THz}$, $\Delta N \sim 2R\Delta v/c = 44000$ *To obtain* $\sigma_R \cong 1.0 \mu m$, *Requirements:* $\sigma_{\Delta N} \sim 0.02$, $\sigma_{\Delta v} \sim 3 \text{ MHz}$

Previous reports:

- \rightarrow FSI I Single-laser demonstration with air transport of beam
- → FSI II Single-laser measurements with fiber transport
 → Results published in *Applied Optics*, 44, 3937-44 (2005)
 Results (~ 50 nm) well within desired precision,
 but only for well controlled laboratory conditions
- → FSI III Dual-laser measurements with fiber transport
 → Results published in *Nucl. Inst. & Meth. A575, 395(2007)* More realistic detector conditions (~ 200 nm)

Background

Measured Distances: 10 cm - 60 cm

Distance Precision:

 ~ 50 nm by using multiple-distance measurement technique under well controlled laboratory conditions.

Vibration Measurement:

0.1-100 Hz, amplitude as low as few nanometers, can be extracted precisely using new vibration extraction technique.

Publication:

"High-precision absolute distance and vibration measurement with frequency scanned interferometry", [Physics/0409110] H.J. Yang, J. Deibel, S. Nyberg, K. Riles, Applied Optics, 44, 3937-44, (2005)

- Cannot count on precisely controlled conditions in ILC detector tracker.
- Thermal fluctuations and drifts likely
 →Refraction index and inferred distance affected
- Can measure temperature, pressure, humidity, etc. and apply empirical formulae, but preferable to measure effects directly and cancel these effects
- Use dual-laser technique (Invented by Oxford ATLAS group):
 → Two independent lasers alternately chopped
 → Frequency scanning over same range but with opposite slope

→ A dual-laser FSI (Oxford ATLAS method) has been implemented with optical choppers.

Laser #1: $D_1 = D_{true} + \Omega_1 \varepsilon_1$ Laser #2: $D_2 = D_{true} + \Omega_2 \varepsilon_2$ Drift errors: $\varepsilon_1 \approx \varepsilon_2 = \varepsilon$ $D_{true} = (D_2 - \rho D_1) / (1 - \rho),$ Where $\rho = \Omega_2 / \Omega_1$

Fringes & F-P Peaks (dual-laser)

- ➔ Distance Measurement Precision (~ 41.1384 cm) Laser #1 or #2 only : Precision (RMS) = 3 ~ 7 microns
- → Combining multi-distance-measurement and dual-laser scanning techniques to reduce and cancel interference fringe uncertainties, vibration and drift errors Dual-laser precision (RMS) ~ 0.20 microns under realistic conditions

→ A 2nd report:

"High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions", [Physics/0609187], Nucl. Inst. & Meth. A575, 395(2007)

- → Used a Micrometer to change the position of retroreflector by large amount (127+/- 3 microns), and check FSI performance. The measurement precision is ~ 0.5 microns with unstable temperature.
- → Used a Piezoelectric transducer (PZT, 20% tolerance) to change the position of the retroreflector by 2.0 +/- 0.4 microns.
 The measurement precision is ~ 0.1 microns with stable temperature.
- ➔ To verify correct tracking of large thermal drifts, we placed a heating pad on a 1' x 2' x 0.5'' Al breadboard to increase temperature by 4 ~ 7 °C. The measured thermal expansions agree well with expectations, the measurement precision is ~ 0.2 microns.

Previously used large commercial optics:

- Retroreflector (Diameter ~ 1'')
- Beam splitter (Diameter ~ 1'')

Need miniaturized, low-X₀ components for actual tracker

Obtained customized fabrication quotes for retroreflectors (3~4 mm) from rapid prototyping companies.

→ Cheap prototype alternatives: a bicycle reflector: (all but one pixel masked off)

Measurement precision for a distance of 18 cm: $\sim 0.4 \ \mu m$

Promising indication, given simple design of the reflector pixels (solid plastic corner cubes with no coating, but low reflective efficiency)

- ➔ Now using Edmund corner cube array, 9 X 9 hexagon corner cubes in 35 mm X 35 mm. Center-to-center spacing of two adjacent corner cubes is ~ 4 mm.
- → The reflective efficiency of single corner cube is comparable to large commercial corner cube and hollow retroreflector (D = 1 inch).
- ➔ High reflective efficiency is vital to make qualified fringes and to make more channels.
- → Under controlled conditions L = 417198.37 + -0.07 microns

➔ The corner cube array has high reflective efficiency and qualified fringes. It's very promising.

We are implementing multi-channels fed by an optical fiber splitter

- → Double-check systematics
- → Implement multiple distance measurements and test overconstrained algorithm for a prototype set of reference points
- → Preparation for test of silicon ladder prototype alignment

Results not ready yet ! 🕞

➔ To evaluate the impact of distortion of silicon ladder on charged track momentum reconstruction/measurement.

→ Integrated track generation, reconstruction and FSI fitting

- ➔ Inputs: charged track with given momentum, 5 silicon layers based on nominal SiD design, magnetic field B = 5 Tesla.
 - -- Assume spatial resolution is 7 microns for hits.
 - -- Distortions: rotations, translations, thermal expansion or contractions of silicon ladders.
 - Applying FSI line-of-sight grid constraint (code not fully debugged – premature to show results, but consistent with earlier simulations.)

➔ Outputs: reconstructed momentum of charged track, event displays for SiD Tracker

Example Tracks (side view)

ALCPG@FNAL

UM - FSI for ILC Tracker Alignment

Normal ($\sigma = 7$ microns for hits)

ALCPG@FNAL

UM - FSI for ILC Tracker Alignment

Normal ($\sigma = 20$ microns for hits)

Translation of Silicon Ladder (Middle)

 $P_{true} = 100 \text{ GeV}, \text{ shift} \sim 1 \text{ micron}$

Worldwide Study of the Physics and Detectors

Translation of Silicon Ladder (Middle)

 $P_{true} = 100 \text{ GeV}, \text{ shift} \sim 10 \text{ microns}$

Worldwide Study of the Physics and Detectors

Translation of Silicon Ladder (Middle)

 $P_{true} = 100 \text{ GeV}, \text{ shift} \sim 100 \text{ microns}$

Worldwide Study of the Physics and Detectors

 $P_{true} = 100 \text{ GeV}, \text{Rotate} \sim 1*10^{-6} \text{ rad}$

 $P_{true} = 100 \text{ GeV}, \text{Rotate} \sim 1*10^{-5} \text{ rad}$

ALCPG@FNAL

 $P_{true} = 100 \text{ GeV}, \text{Rotate} \sim 1*10^{-4} \text{ rad}$

- Several FSI demonstration systems with increasing realism have been implemented
- Results on achievable measurement precision are quite promising (~ 0.2 microns with dual-laser scanning)

➔ Published Results

Hai-Jun Yang, Sven Nyberg, Keith Riles, "*High-precision Absolute Distance Measurement using Dual-Laser Frequency Scanned Interferometry Under Realistic Conditions*", Nucl. Instrum. & Meth. A575 (2007) 395-401

Hai-Jun Yang, Jason Deibel, Sven Nyberg, Keith Riles, "*High-precision absolute distance and vibration measurement using frequency scanned interferometry*", <u>Applied Optics, Vol.44 (2005) 3937-3944</u>

→ Ongoing work:

– Miniaturization:

baseline retroreflector is plexiglass, but want to investigate other materials (constrained by available prototyping funds)

- Multiple channels:

dual-channel system nearly ready

- Simulations:

integrated framework nearly complete, early results seem promising

Fringe Interpolating Technique

Worldwide Study of the Physics and Detectors

Dual-Laser FSI Data Samples – Under Realistic Conditions

- * with box open(20 scans), with fan on (10 scans), with vibration(8 scans).
- * Scanning rates for Laser #1 and #2 are -0.4 and 0.4 nm/s, respectively.
- * Scanning time is 25 seconds, sampling rate is 100 KS/s.
- * Two lasers are operated simultaneously, 2-blade chopper frequency is 20 Hz.

Data	Scans	Conditions	Distance(cm)	$\operatorname{Precision}(\mu\mathrm{m})$ for multi-distmeas./scan					
			from dual-laser	2000	1500	1000	500	100	1
L1	10	open box	_	5.70	5.73	6.16	6.46	5.35	6.64
L2	10	open box	_	5.73	5.81	6.29	6.61	5.66	6.92
L1+L2	10	open box	41.13835	0.20	0.19	0.18	0.21	0.39	1.61
L1	10	open box+fan on	-	5.70	4.91	3.94	3.49	3.29	3.04
L2	10	open box+fan on	_	5.70	5.19	4.23	3.78	3.21	6.07
L1+L2	10	open box+fan on	41.13841	0.19	0.17	0.20	0.22	0.31	3.18
L1	10	open box	_	6.42	5.53	4.51	3.96	4.41	3.36
L2	10	open box	_	6.81	5.93	4.86	4.22	4.63	5.76
L1+L2	10	open box	41.13842	0.20	0.20	0.26	0.19	0.27	2.02
L1	8	open box+vibration	-	4.73	4.82	3.60	3.42	4.62	8.30
L2	8	open box+vibration	_	4.72	4.66	3.66	3.65	4.63	5.56
L1+L2	8	open box+vibration	41.09524	0.17	0.21	0.17	0.15	0.39	1.75

→Used a Micrometer to change the position of retroreflector by large amount (127+/- 3 microns), and check FSI performance. Laser #1, 5 full scan data for each independent test.

> dR1 = 128.68 +/- 0.46 microns dR2 = 129.55 +/- 0.63 microns dR3 = 127.44 +/- 0.63 microns dR4 = 124.90 +/- 0.48 microns

Single-laser scans – unstable temps

→Used a Piezoelectric transducer (PZT, 20% tolerance) to change the position of the retroreflector by 2.0 ± 0.4 microns. Laser #1, 5 full scans for each test.

dR5 = 2.33 +/- 0.12 microns dR6 = 2.23 +/- 0.07 microns Single-laser scans – stable temps

To verify correct tracking of large thermal drifts, we placed a heating pad on a 1' X 2' X 0.5" Aluminum breadboard \rightarrow Test 1: increased temperature by 6.7 +/- 0.1 °C dR expected = 62.0 ± 0.9 microns dR measured = 61.72 + - 0.18 microns \rightarrow Test 2: increased temperature by 6.9 +/- 0.1 °C dR expected = 64.4 ± 0.9 microns Dual-laser scans dR measured = 64.01 + - 0.23 microns - closed box \rightarrow Test 3: increased temperature by 4.3 +/- 0.1 °C dR expected = 39.7 ± 0.9 microns dR measured = 39.78 + - 0.22 microns \rightarrow Test 4: increased temperature by 4.4 +/- 0.1 °C dR expected = 40.5 ± 0.9 microns dR measured = 41.02 + - 0.21 microns