Electron Identification Based on Boosted Decision Trees

Hai-Jun Yang University of Michigan, Ann Arbor (with T. Dai, X. Li, A. Wilson, B. Zhou)

> ATLAS Egamma Meeting October 2, 2008

Motivation

- Lepton (e, μ , τ) Identification with high efficiency is crucial for new physics discoveries at the LHC
- Great efforts in ATLAS to develop the algorithms for electron identification:
 - Cut-based algorithm: IsEM
 - Multivariate algorithms: Likelihood and BDT
- Further improvement could be achieved with better treatment of the multivariate training using the Boosted Decision Trees technique

MC Samples for e-ID studies

e Signal	Dataset	SW Version
$W \rightarrow e_V$	5104	V13
$W \rightarrow e_V$	5104	V12
$Z \rightarrow ee$	5144	V12
WW $\rightarrow ev\mu v$	5922, 5925	V12
$ZZ \rightarrow 4I$	5931	V12
Jet samples	Dataset	SW Version
J0: di-jet (8 <pt<17 gev)<="" td=""><td>5009</td><td>V12, <mark>V13</mark></td></pt<17>	5009	V12, <mark>V13</mark>
J1: di-jet (17 <pt<35 gev)<="" td=""><td>5010</td><td>V12, <mark>V13</mark></td></pt<35>	5010	V12, <mark>V13</mark>
J2: di-jet (35 <pt<70 gev)<="" td=""><td>5011</td><td>V12, <mark>V13</mark></td></pt<70>	5011	V12, <mark>V13</mark>
J3: di-jet (70 <pt<140 gev)<="" td=""><td>5012</td><td>V12</td></pt<140>	5012	V12
J4: di-jet (140 <pt<280 gev)<="" td=""><td>5013</td><td>V12, <mark>V13</mark></td></pt<280>	5013	V12, <mark>V13</mark>
J5: di-jet (280 <pt<560 gev)<="" td=""><td>5014</td><td>V12, <mark>V13</mark></td></pt<560>	5014	V12, <mark>V13</mark>
J6: di-jet (560 <pt<1120 gev)<="" td=""><td>5015</td><td>V12, <mark>V13</mark></td></pt<1120>	5015	V12, <mark>V13</mark>
ttbar \rightarrow Wb Wb \rightarrow all jets	5204	V12

Electron Identification Studies

Select electrons in two steps

- 1) Pre-selection: an EM cluster matching a track
- Apply electron ID based on pre-selected samples with different e-ID algorithms (IsEM, and Likelihood for SW release v12 samples; add BDT for v13).

New BDT e-ID development at U. Michigan

Based on version 12 datasets (talk by H. Yang)

http://indico.cern.ch/conferenceDisplay.py?confld=38991

-- Further study based on version 13 datasets

Performance comparisons

- -- electron ID efficiency
- -- jet fake rate

Signal Pre-selection: MC electrons

- MC True electron from W \rightarrow ev by requiring - $|\eta_e| < 2.5$ and $E_T^{true} > 10$ GeV (N_e)
- Match MC e/ γ to EM cluster:

- ΔR <0.2 and 0.5 < E_T^{rec} / E_T^{true}< 1.5 (N_{EM})

• Match EM cluster with an inner track:

 $-eg_trkmatchnt > -1$ (N_{EM/track})

• Pre-selection Efficiency = $N_{EM/Track} / N_{e}$

Electrons

Electron ID with BDT

Electron Pre-selection Efficiency

The inefficiency mainly due to track matching

Electron Pre-selection Efficiency

e from process	Dataset	Software Version	EM / Track Match
W \rightarrow ev (N _e = 135000)	5104	V13	89.1%
$W \rightarrow ev (N_e = 485489)$	5104	V12	88.2%
Z → ee (N _e = 29383)	5144	V12	87.3%
WW $\rightarrow ev\mu v (N_e = 39822)$	5922 5925	V12	87.8%
$ZZ \rightarrow 4I (N_e = 97928)$	5931	V12	87.4%

Pre-selection of Jet Faked Electrons

• Count number of jets with

- $|\eta_{jet}|$ < 2.5, E_T^{jet} >10 GeV (N_{jet})

- Loop over all EM clusters; each cluster matches with a jet
 - E_T^{EM} > 10 GeV (N_{EM})
- Match EM cluster with an inner track:

 $-eg_trkmatchnt > -1$ (N_{EM/track})

Pre-selection Acceptance = N_{EM/Track} / N_{jet}

Jets (from tt) and Faked Electrons

Faked Electron from Top Jets vs Different EM $E_{\rm T}$

Jet Fake Rate from Pre-selection

 E_T^{jet} > 10 GeV, $|\eta^{jet}|$ < 2.5, Match the EM/Track object to the closest jet

From process	Dataset	N _{jets}	V13	V12
J0: di-jet (8 <pt<17 gev)<="" td=""><td>5009</td><td>404363</td><td>4.8E-3</td><td>6.0E-3</td></pt<17>	5009	404363	4.8E-3	6.0E-3
J1: di-jet (17 <pt<35 gev)<="" td=""><td>5010</td><td>724033</td><td>1.5E-2</td><td>1.5E-2</td></pt<35>	5010	724033	1.5E-2	1.5E-2
J2: di-jet (35 <pt<70 gev)<="" td=""><td>5011</td><td>713308</td><td>9.1E-2</td><td>1.1E-1</td></pt<70>	5011	713308	9.1E-2	1.1E-1
J3: di-jet (70 <pt<140 gev)<="" td=""><td>5012</td><td>42330</td><td>N/A</td><td>3.2E-1</td></pt<140>	5012	42330	N/A	3.2E-1
J4: di-jet (140 <pt<280 gev)<="" td=""><td>5013</td><td>1185538</td><td>3.3E-1</td><td>4.3E-1</td></pt<280>	5013	1185538	3.3E-1	4.3E-1
J5: di-jet (280 <pt<560 gev)<="" td=""><td>5014</td><td>1606039</td><td>3.6E-1</td><td>5.1E-1</td></pt<560>	5014	1606039	3.6E-1	5.1E-1
J6: di-jet (560 <pt<1120 gev)<="" td=""><td>5015</td><td>1828401</td><td>3.3E-1</td><td>5.0E-1</td></pt<1120>	5015	1828401	3.3E-1	5.0E-1
ttbar \rightarrow Wb Wb \rightarrow all jets	5204	675046	N/A	3.2E-1

Existing ATLAS e-ID Algorithms

- 1) IsEM & 0x7FFFFF == 0 (v13)
- 2) Likelihood:

 $D_{LH} = log (EMW eight / PionW eight) > 6.5 (V13)$

3) Ele_BDTScore (Rel. v13) > 7 (v13)

e-ID in V12 (talk by H. Yang on Sept. 10, 2008): http://indico.cern.ch/conferenceDisplay.py?confld=38991

1) IsEM & 0x7FF == 0

2) Likelihood:

D_{LH} = **EMWeight** /(**EMWeight**+**PionWeight**) > **0.6**

e-ID multivariate discriminators (v13)

Variables Used for BDT e-ID (UM)

The same variables for IsEM are used

egammaPID::ClusterHadronicLeakage

fraction of transverse energy in TileCal 1st sampling

egammaPID::ClusterMiddleSampling

Ratio of energies in 3*7 & 7*7 window Ratio of energies in 3*3 & 7*7 window Shower width in LAr 2nd sampling Energy in LAr 2nd sampling

egammaPID::ClusterFirstSampling

Fraction of energy deposited in 1st sampling Delta Emax2 in LAr 1st sampling Emax2-Emin in LAr 1st sampling Total shower width in LAr 1st sampling Shower width in LAr 1st sampling Fside in LAr 1st sampling • egammaPID::TrackHitsA0

B-layer hits, Pixel-layer hits, Precision hits Transverse impact parameter

• egammaPID::TrackTRT

Ratio of high threshold and all TRT hits

egammaPID::TrackMatchAndEoP

Delta eta between Track and egamma Delta phi between Track and egamma E/P – egamma energy and Track momentum ratio

► Track Eta and EM Eta

• Electron isolation variables: Number of tracks (ΔR =0.3) Sum of track momentum (ΔR =0.3) Ratio of energy in ΔR =0.2-0.45 and ΔR =0.2

EM Shower shape distributions of discriminating Variables (signal vs. background)

1.2

1.1

ECal and Inner Track Match

Electron Isolation Variables

BDT e-ID Training (UM)

- BDT multivariate pattern recognition technique: – [H. Yang et. al., NIM A555 (2005) 370-385]
- BDT e-ID training signal and backgrounds (jet faked e)
 - W→ev as electron signal
 - Di-jet samples (J0-J6), Pt=[8-1120] GeV
 - ttbar hadronic decays samples (Rel. v12 only)
- BDT e-ID training procedure
 - Event weight training based on background cross sections
 [H. Yang et. al., JINST 3 P04004 (2008)]
 - Apply additional cuts on the training samples to select hardly identified jet faked electron as background for BDT training to make the BDT training more effective.
 - Apply additional event weight to high P_T backgrounds to effective reduce the jet fake rate at high P_T region.

Use Independent Samples to Test the BDT e-ID Performance

- BDT Test Signal (e) Samples:
 - W \rightarrow ev (Rel. v12, v13)
 - WW \rightarrow $ev\mu v$ (Rel. v12)
 - $-Z \rightarrow ee$ (Rel. v12)
 - $-ZZ \rightarrow 4I$ (Rel. v12)
- BDT Test Background (jet faked e) Samples:
 - Di-jet samples, Pt=[8-1120] GeV (Rel. v12, v13)
 - ttbar hadronic decays samples (Rel. v12)
 - $W \rightarrow \mu v + Jets$ (Rel. v12)
 - Z→µµ + Jets (Rel. v12)

BDT e-ID discriminator (UM)

Comparison of e-ID Algorithms

→ BDTs have high e-ID efficiency and low jet fake rate
 → BDT (UM) has achieved better performance

Dverall Jet Fake Rate

Comparison of IsEM vs BDT-UM

Comparison of Likelihood vs BDT-UM

Comparison of BDT-v13 vs BDT-UM

Jet Fake Rate (IsEM vs BDT-UM)

Jet Fake Rate (Likelihood vs BDT-UM)

Jet Fake Rate (BDT-v13 vs BDT-UM)

Overall Electron Efficiency and Fake Rate from Jets (E_T (EM) > 10 GeV)

From process	IsEM	Likelihood	BDT (Rel. v13)	BDT (U. Michigan)
$W \rightarrow e_v$ (Signal)	65.7%	78.5%	78.6%	82.3%
J0: di-jet (8 <pt<17 gev)<="" td=""><td>1.8E-4</td><td>7.1E-5</td><td>8.7E-5</td><td>6.0E-5</td></pt<17>	1.8E-4	7.1E-5	8.7E-5	6.0E-5
J1: di-jet (17 <pt<35 gev)<="" td=""><td>3.8E-4</td><td>1.5E-4</td><td>1.6E-4</td><td>1.1E-4</td></pt<35>	3.8E-4	1.5E-4	1.6E-4	1.1E-4
J2: di-jet (35 <pt<70 gev)<="" td=""><td>6.3E-4</td><td>2.9E-4</td><td>1.8E-4</td><td>6.7E-5</td></pt<70>	6.3E-4	2.9E-4	1.8E-4	6.7E-5
J3: di-jet (70 <pt<140 gev)<="" td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></pt<140>	N/A	N/A	N/A	N/A
J4: di-jet (140 <pt<280 gev)<="" td=""><td>5.2E-4</td><td>3.8E-4</td><td>1.6E-4</td><td>8.7E-5</td></pt<280>	5.2E-4	3.8E-4	1.6E-4	8.7E-5
J5: di-jet (280 <pt<560 gev)<="" td=""><td>5.5E-4</td><td>4.6E-4</td><td>1.7E-4</td><td>1.2E-4</td></pt<560>	5.5E-4	4.6E-4	1.7E-4	1.2E-4
J6: di-jet (560 <pt<1120 gev)<="" td=""><td>4.4E-4</td><td>6.5E-4</td><td>2.2E-4</td><td>2.0E-4</td></pt<1120>	4.4E-4	6.5E-4	2.2E-4	2.0E-4

Summary and Future Plan

- Electron ID efficiency can be improved by using BDT multivariate particle identification technique
 – e Eff = 65.7% (IsEM) → 78.5% (LH) →82.3% (BDT).
- BDT technique also reduce the jet fake rate
- Incorporate the Electron ID based on BDT into ATLAS official reconstruction package
- BDT training with real data:
 - Select electron signals $Z \rightarrow ee$ (Tag-Prob)
 - Select fake electron from di-jet samples

Backup Slides

Comparison of e-ID Algorithms (v13)

IsEM(black), LH(red), BDT-v13(blue), BDT-UM(pink)

Performance of The BDT e-ID (v12)

Comparison of e-ID Algorithms (v12)

Comparison of e-ID Algorithms (v12)

Electron ID Eff vs. η (W \rightarrow ev)

Electron ID Eff vs P_T (W $\rightarrow e_V$)

Overall e-ID Efficiency (E_T > 10 GeV)

From process	IsEM	Likelihood	BDT (no Isolation)	BDT (Isolation)
W →ev	65.6%	75.4%	81.7%	81.6%
$Z \rightarrow ee$	66.7%	75.8%	82.6%	82.4%
WW $\rightarrow ev\mu v$	66.9%	76.4%	82.6%	81.7%
$ZZ \rightarrow 4I$	67.5%	77.0%	83.1%	81.4%
$H \rightarrow WW \rightarrow e_{V\mu V}$ (140 GeV)	66.1%	75.4%	80.7%	78.7%
$H \rightarrow WW \rightarrow ev\mu v$ (150 GeV)	66.4%	76.0%	81.2%	78.6%
$H \rightarrow WW \rightarrow e_{V\mu V}$ (160 GeV)	66.8%	76.7%	81.9%	78.6%
$H \rightarrow WW \rightarrow e_{V\mu V}$ (165 GeV)	67.3%	77.2%	82.1%	78.8%
$H \rightarrow WW \rightarrow e_{\nu\mu\nu} (170 \text{ GeV})$	67.7%	77.3%	82.3%	79.5%
$H \rightarrow WW \rightarrow e_{V\mu V}$ (180 GeV)	67.7%	77.5%	82.4%	80.1%

Overall Electron Fake Rate from Jets E_T (EM) > 10 GeV

From process	IsEM	Likelihood	BDT (no isolation)	BDT (Isolation)
J0: di-jet (8 <pt<17 gev)<="" td=""><td>2.6E-4</td><td>2.8E-4</td><td>1.0E-4</td><td>1.0E-4</td></pt<17>	2.6E-4	2.8E-4	1.0E-4	1.0E-4
J1: di-jet (17 <pt<35 gev)<="" td=""><td>6.3E-4</td><td>7.7E-4</td><td>4.9E-4</td><td>2.0E-4</td></pt<35>	6.3E-4	7.7E-4	4.9E-4	2.0E-4
J2: di-jet (35 <pt<70 gev)<="" td=""><td>1.7E-3</td><td>2.3E-3</td><td>1.4E-3</td><td>4.4E-4</td></pt<70>	1.7E-3	2.3E-3	1.4E-3	4.4E-4
J3: di-jet (70 <pt<140 gev)<="" td=""><td>1.5E-3</td><td>2.0E-3</td><td>6.6E-4</td><td>4.7E-5</td></pt<140>	1.5E-3	2.0E-3	6.6E-4	4.7E-5
J4: di-jet (140 <pt<280 gev)<="" td=""><td>1.4E-3</td><td>1.7E-3</td><td>8.4E-4</td><td>1.7E-4</td></pt<280>	1.4E-3	1.7E-3	8.4E-4	1.7E-4
J5: di-jet (280 <pt<560 gev)<="" td=""><td>1.5E-3</td><td>2.0E-3</td><td>1.2E-3</td><td>2.3E-4</td></pt<560>	1.5E-3	2.0E-3	1.2E-3	2.3E-4
J6: di-jet (560 <pt<1120 gev)<="" td=""><td>1.1E-3</td><td>2.5E-3</td><td>1.4E-3</td><td>2.1E-4</td></pt<1120>	1.1E-3	2.5E-3	1.4E-3	2.1E-4
ttbar \rightarrow Wb Wb \rightarrow all jets	4.2E-3	4.8E-3	3.0E-3	2.8E-4

Overall Electron Fake Rate from μ +Jets Events Why the fake rate increase from single μ to di- μ events?

From process	IsEM	Likelihood	BDT (no isolation)	BDT (Isolation)	
$W \rightarrow \mu \nu, J1$	1.6E-3	4.8E-3	1.7E-3	8.2E-4	
$W \rightarrow \mu \nu$, J2	2.0E-3	4.6E-3	1.8E-3	9.6E-4	
$W \rightarrow \mu \nu$, J3	1.8E-3	3.5E-3	1.6E-3	7.6E-4	
$W \rightarrow \mu \nu, J4$	2.0E-3	4.0E-3	1.6E-3	7.8E-4	
$W \rightarrow \mu \nu$, J5	2.0E-3	3.6E-3	1.8E-3	6.7E-4	
$Z \rightarrow \mu\mu$, J2	2.3E-3	6.8E-3	2.8E-3	2.1E-3	
$Z \rightarrow \mu\mu$, J3	2.0E-3	6.1E-3	2.1E-3	1.7E-3	
$Z \rightarrow \mu\mu$, J4	2.2E-3	5.5E-3	2.5E-3	1.6E-3	
$Z \rightarrow \mu\mu$, J5	2.1E-3	5.1E-3	2.3E-3	1.3E-3	
	Els streve II			10	

Fake Electron from an EM Cluster associated with a muon track

It can be suppressed by requiring ΔR between μ & EM greater than 0.1

Fake Electron from an EM Cluster associated with a muon track

MC Processes	Ne	$Eff_{EM/Track}$	Eff_{IsEM}	Eff_{LH}	Eff_{BDT1}	Eff_{BDT2}	
Test Samples	Candidates	Matching	no Isloation	no Isloation	no Isloation	with Isolation	
Wμν-J1	35333	0.126E+00	0.161E-02	0.484E-02	0.170E-02	0.821E-03	
$W\mu v$ -J2	40828	0.163E+00	0.198E-02	0.458E-02	0.179E-02	0.955E-03	
Wµv-J3	84389	0.203E+00	0.184E-02	0.351E-02	0.161E-02	0.758E-03	
$W\mu\nu$ -J4	69676	0.241E+00	0.202E-02	0.398E-02	0.161E-02	0.775E-03	
$W\mu v$ -J5	27443	0.271E+00	0.197E-02	0.357E-02	0.182E-02	0.656E-03	
$Z\mu\mu$ -J2	63781	0.169E+00	0.226E-02	0.679E-02	0.278E-02	0.209E-02	
Ζμμ-J3	87471	0.206E+00	0.189E-02	0.607E-02	0.207E-02	0.173E-02	
Ζμμ-J4	110475	0.240E+00	0.215E-02	0.548E-02	0.251E-02	0.156E-02	
Ζμμ-J5	46756	0.270E+00	0.210E-02	0.505E-02	0.225E-02	0.130E-02	
Electron Fake Rate from Jets with muon veto cut $\Delta R_{\mu-eg} > 0.1$							
$W\mu v$ -J1	35333	0.126E+00	0.142E-02	0.297E-02	0.708E-03	0.425E-03	
$W\mu\nu$ -J2	40828	0.163E+00	0.169E-02	0.265E-02	0.514E-03	0.441E-03	
Wµv-J3	84389	0.203E+00	0.154E-02	0.219E-02	0.427E-03	0.249E-03	
$W\mu\nu$ -J4	69676	0.241E+00	0.188E-02	0.266E-02	0.402E-03	0.301E-03	
Wμν-J5	27443	0.271E+00	0.189E-02	0.262E-02	0.401E-03	0.328E-03	
Ζμμ-J2	63781	0.169E+00	0.174E-02	0.337E-02	0.972E-03	0.627E-03	
Ζμμ-J3	87471	0.206E+00	0.139E-02	0.272E-02	0.652E-03	0.446E-03	
Ζμμ-J4	110475	0.240E+00	0.175E-02	0.281E-02	0.534E-03	0.398E-03	
Zμμ-J5	46756	0.270E+00	0.186E-02	0.269E-02	0.471E-03	0.406E-03	

Rank of Variables (Gini Index)

- 1. Ratio of $Et(\Delta R=0.2-0.45) / Et(\Delta R=0.2)$
- 2. Number of tracks in $\Delta R=0.3$ cone
- 3. Energy leakage to hadronic calorimeter
- 4. EM shower shape E237 / E277
- 5. $\Delta\eta$ between inner track and EM cluster
- 6. Ratio of high threshold and all TRT hits
- 7. η of inner track
- 8. Number of pixel hits
- 9. Emax2 Emin in LAr 1st sampling
- 10. Emax2 in LAr 1st sampling
- 11. D0 transverse impact parameter
- 12. Number of B layer hits
- 13. EoverP ratio of EM energy and track momentum
- 14. $\Delta \phi$ between track and EM cluster
- 15. Shower width in LAr 2nd sampling
- 16. Sum of track Pt in DR=0.3 cone
- 17. Fraction of energy deposited in LAr 1st sampling
- 18. Number of pixel hits and SCT hits
- 19. Total shower width in LAr 1st sampling
- 20. Fracs1 ratio of (E7strips-E3strips)/E7strips in LAr 1st sampling
- 21. Shower width in LAr 1st sampling

Boosted Decision Trees

Relatively new in HEP – MiniBooNE, BaBar, D0(single top discovery), ATLAS
 Advantages: robust, understand 'powerful' variables, relatively transparent, ...

"A procedure that combines many weak classifiers to form a powerful committee"

BDT Training Process

•Split data recursively based on input variables until a stopping criterion is reached (e.g. purity, too few events)

- Every event ends up in a "signal" or a "background" leaf
- Misclassified events will be given larger weight in the next decision tree (boosting)

H. Yang et.al. NIM A555 (2005)370, NIM A543 (2005)577, NIM A574(2007) 342

A set of decision trees can be developed,

each re-weighting the events to enhance identification of backgrounds misidentified by earlier trees ("boosting")

For each tree, the data event is assigned

+1 if it is identified as signal,

- 1 if it is identified as background.

The total for all trees is combined into a "score"

