MiniBooNE Event Reconstruction and Particle Identification

Hai-Jun Yang University of Michigan, Ann Arbor (for the MiniBooNE Collaboration)

> DNP06, Nashville, TN October 25-28, 2006

Outline

- Physics Motivation
- MiniBooNE Event Types
- Event Reconstruction
- Particle Identification
- Summary

Physics Motivation

→ LSND observed a positive signal, but not confirmed.
 P(v
_μ → v
_e) = sin²(2θ) sin²(^{1.27 LΔm²}/_E) = (0.264 ± 0.067 ± 0.045)%
 → The MiniBooNE is designed to confirm or refute LSND oscillation result at Δm² ~ 1.0 eV².

MiniBooNE Flux

Event Topology

DNP06, H.J.Yang, MiniBooNE PID

Event Reconstruction

- To reconstruct event position, direction, time, energy and invariant mass etc.
- Cerenkov light prompt, directional
- Scintillation light delayed, isotropic
- Using time likelihood and charge likelihood method to determine the optimal event parameters.
- Two parallel reconstruction packages
 - S-Fitter is based on a simple, point-like light source model;
 - P-Fitter differs from S-Fitter by using more 0th approximation tries, adding e/µ tracks with longitudinally varying light source term, wavelength-dependent light propagation and detection, non-point-like PMTs and photon scattering, fluorescence and reflection.

Reconstruction Performance

10/26/2006

DNP06, H.J.Yang, MiniBooNE PID

Particle Identification

Two complementary and parallel methods:

- Log-likelihood technique:
 - simple to understand, widely used in HEP data analysis but less sensitive
- Boosted Decision Trees:
 - Non-linear combination of input variables
 - Great performance for large number of input variables (about two hundred variables)
 - Powerful and stable by combining many decision trees to make a "majority vote"

Boosted Decision Trees

-30

-20

-10 AdaBoost Output

 ≥ 100

10/26/2006

Signa

20

10

Performance vs Number of Trees

→ Boosted decision trees focus on the misclassified events which usually have high weights after hundreds of tree iterations. An individual tree has a very weak discriminating power; the weighted misclassified event rate err_m is about 0.4-0.45.

➔ The advantage of using boosted decision trees is that it combines many decision trees, "weak" classifiers, to make a powerful classifier. The performance of boosted decision trees is stable after a few hundred tree iterations.

Ref1: H.J.Yang, B.P. Roe, J. Zhu, "Studies of Boosted Decision Trees for MiniBooNE Particle Identification", Physics/0508045, Nucl. Instum. & Meth. A 555(2005) 370-385.

Ref2: B.P. Roe, H.J. Yang, J. Zhu, Y. Liu, I. Stancu, G. McGregor, "Boosted decision trees as an alternative to artificial neural networks for particle identification", physics/0408124, NIMA 543 (2005) 577-584.

Output of Boosted Decision Trees

Osc v_e CCQE vs All Background

MC vs v_{μ} Data

1subevt,thits>200,vhits<6,R<500 cm,0.1<Efull<1.2 GeV,Y21<-5

DNP06, H.J.Yang, MiniBooNE PID

Summary

- MiniBooNE Event Reconstruction
 - Position resolution ~ 23 cm
 - Direction resolution ~ 6°
 - Energy resolution ~ 15%
 - Reconstructed π^0 mass resolution ~ 20 MeV/c²
- MiniBooNE Particle Identification
 - For 0.1% μ eff., ~ 90% electron eff.
 - For 1% π^0 eff., ~ 70% electron eff.
 - For 0.5% all background eff., ~ 80% electron eff.
- MiniBooNE Results are coming soon ...

Backup Slides

Light Model

Cerenkov light - directional

 $\mu_i^{CER} = \rho \varepsilon_i F(\cos \theta, E) f(\cos \eta) \frac{\exp(-r_i / \lambda_{CER})}{r_i^2}$

• Scintillation light - isotopic $\mu_i^{SCI} = \varphi \varepsilon_i f(\cos \eta) \frac{\exp(-r_i / \lambda_{sci})}{r^2}$

Predicted charge

 $\mu_i = \mu_i^{CER} + \mu_i^{SCI}$

- Cerenkov angular distribution $F(\cos \vartheta)$ 1.
- **PMT** angular response $f(\cos\eta)$ 2.
- 3. Cerenkov attenuation length – λcer
- Scintillation attenuation length λ sci 4.
- 5. Relative quantum efficiency - ε_i
- Cerenkov light strength p 6.
- 7. Scintillation light strength - φ

Isotropic Scintilation light **Φ Directional Cherenkov light** ρ (ux uy uz) **θ**c⊶⊳ Point-like light source model f(cosh) يتبلينيا يتبلير -0.76 -0.5 -0.25 0 0.25 0.5 0.76 ومطيبين

10/26/2006

DNP06, H.J.Yang, MiniBooNE PID

0.8 0.6

0.4

cosn

0.1 0.2 0.3 0.4 0.5 0.6

Light Model

1. Corrected time $t_{corr}^{(i)} = t_i - t_0 - \frac{r_i}{r_i}$ (£) ³ ⊢ _{2.5} Constant Mean 0.1044E-01 Raw times 0.1488 Sigma d > 50 cm2. Cerenkov light t_{corr}⁽ⁱ⁾ distribution 1.5 1 $T_{cer}(t_{corr}) = \frac{1}{\sqrt{2\pi}\sigma(\mu - E)} \exp\left\{\frac{-1}{2\sigma^{2}(\mu - E)}[t_{corr} - t_{0}(\mu_{c}, E)]^{2}\right\}$ 0.5 -1.5 -0.5 0.5 -1 Ο 1 Corrected time, t (ns) 10 T_s(t) **3.** Scintillation light t_{corr}⁽ⁱ⁾ distribution 0.9955 10 ⁻² P2 t_o = 0 5249F-01 σ= P3 0.3322 $T_{sci}(t_{corr}) = \frac{1}{2\tau(\mu, E)} \exp \left| \frac{\sigma^2(\mu_s, E)}{2\tau^2(\mu, E)} - \frac{t_{corr} - t_0(\mu_s, E)}{\tau(\mu_s, E)} \right|$ 10 ⁻³ d > 50 cm $\times \qquad \exp\left[\frac{\sigma(\mu_s, E)}{\sqrt{2}\tau(\mu, E)} - \frac{t_{corr} - t_0(\mu_s, E)}{\sqrt{2}\tau(\mu, E)}\right]$ 10 Raw times 10 -50 50 100 150 200 250 4. Input: Cerenkov light – t_0^{cer} , σ^{cer} Corrected time, t (ns) Hits/1 ns 10⁶ Scintillation light – $t_0^{sci}, \sigma^{sci}, \tau^{sci}$ Monte Carlo simulation Data 10 5. Total negative log time likelihood 10⁴ $L(t_{corr}^{(i)}) = -\log(\frac{\mu_c}{\mu_c + \mu_c}T_{cer}(t_{corr}^{(i)}, \mu_c) + \frac{\mu_s}{\mu_c + \mu_c}T_{sci}(t_{corr}^{(i)}, \mu_s))$ 20 40 60 80

Corrected Time (ns)

2.524

1.5

33.60

300

100