Measurement of Out of Tank (Dirt) Events with MiniBooNE

Hai-Jun Yang (for MiniBooNE Collaboration), University of Michigan, Ann Arbor APS April Meeting, Jacksonville, Florida, April 14-17, 2007

Goal: The MiniBooNE experiment is designed to confirm or refute $v_{\mu} \rightarrow v_{e}$ oscillation signal seen by LSND

- The FNAL Booster delivers 8 GeV protons to the MiniBooNE beamline.
- The protons hit a 71cm beryllium target producing pions and kaons.
- The magnetic horn focuses the secondary particles towards the detector.
- The mesons decay into neutrinos, and the neutrinos fly to the detector, all other secondary particles are absorbed by absorber and 450 m dirt.
- 5.6E20 POT for neutrino mode since 2002.
- Switch horn polarity to run anti-neutrino mode since January 2006.

- L/E, LSND (0.03km / 0.05 GeV)
- About 0.8 GeV ν_{μ} beam (~ 0.5% intrinsic $\nu_{e})$
- 1.5 M neutrino events collected
- Looking for a few hundred $\nu_{e}\,\text{CCQE}$
- Major background sources are intrinsic ν_e (~60%), ν_μ mis-ID (~30%) and out of tank events (~10%)

Out of Tank Events in Enhanced Dirt Sample

- Neutrino beam interacts with dirt outside of tank, the high energy γ (100 ~ 300 MeV) sneak into the tank to produce e-like Cerenkov ring.
- N_dirt_expected =621, N_tank_expected=726, N_data = 1349
- N_dirt_measured / N_dirt_expected = 0.99 \pm 0.15
- \bullet Dirt events contribute ~10% of background for oscillation ν_e search.

