Study of Diboson Physics with the ATLAS Detector at LHC

Hai-Jun Yang University of Michigan (for the ATLAS Collaboration)

APS April Meeting St. Louis, April 12-15, 2008

The Large Hadron Collider at CERN CM = 14 GeV, Lumi = 10^{34} cm⁻² s⁻¹

Physics Motivations - Diboson

- It's related to some fundamental questions:
 - Why massive bosons?
 - What is the source of the EWSB?
- There should have some new physics leading to EWSB through searching for
 - Direct evidence of new particles (Higgs, SUSY etc.)
 - Indirect evidence of observing anomalous TGCs
 - SM diboson are important control samples for new physics

New Physics with Diboson

- WW Higgs, Z', G, TGCs
- WZ SUSY, technicolor, W', TGCs
- ZZ Higgs, TGCs • $W\gamma$ – TGCs • $Z\gamma$ – TGCs

04/14/2008

Cross Sections of Diboson

Diboson mode	Conditions	$\sqrt{s} = 1.96 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$
		$\sigma[pb]$	$\sigma[pb]$
W^+W^- [14]	W-boson width included	12.4	111.6
$W^{\pm}Z^{0}$ [14]	Z and W on mass shell	3.7	47.8
$Z^0 Z^0$ [14]	Z's on mass shell	1.43	14.8
$W^{\pm}\gamma$ [15]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	19.3	451
$Z^{0}\gamma$ [16]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	4.74	219

Production rate at LHC will be at least 100x higher at Tevatron. 10x higher cross section and 10-100x higher luminosity.

Probes much higher energy region, so sensitive to anomalous TGCs.

ATLAS diboson Event Selection

$W^+W^- \ell^+ \vee \ell^- \vee$	2 isolated leptons with P_T > 25 GeV, opposite charges, $\Delta R(\ell)$ >0.2,			
$\sigma = 112.2 \text{ ph}$	Missing transverse energy > 30 GeV, M _z -Mee/μμ > 30 GeV			
0 _{WW} – 115.5 pb	N _{jet} (E _T >30 GeV) < 2, Vector-sum (lep, MET) <100GeV			
W Z $\rightarrow \ell \nu \ell^+ \ell^-$	3 isolated leptons with $P_{T(max)} > 25 \text{ GeV}, \Delta R(\ell) > 0.2$			
- 20.4 mb	vertex cut for each lepton pair: Δ Z<1mm, Δ A<0.1mm			
σ _{W+Z} = 29.4 pb	MET > 30 GeV, $ M_7$ -Mee/ $\mu\mu$ < 10 GeV, 40GeV < M_T < 250GeV			
σ _{w-z} = 18.4 pb	N _{jet} (E _T >30 GeV) < 2, Vector-sum (lep, MET) <100GeV			
$ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$	4 isolated leptons with at least one $P_T > 20$ GeV			
18.8 mb	Separation between each lepton pair $\Delta R(\mathcal{U})$ >0.2			
$O_{ZZ} = 18.8 \text{ pb}$	All the lepton come from the same vertex, no hadron jets			
$ZZ \rightarrow \ell^+ \ell^- \nu \nu$	2 lepton with $P_T > 20$ GeV, and $ M_Z - M_{ } < 10$ GeV, $P_T(\ell) > 100$ GeV			
- 10.0 mb	veto the 3 rd lepton, MET > 50 GeV, N _{iet} (E _T >30 GeV) =0,			
σ _{zz} = 18.8 pb	Δφ(Z, MET) > 35 deg, MET-PT(Z) /PT(Z) < 0.35			
$W \gamma \rightarrow \ell \gamma \gamma$	1 isolated lepton with PT > 20 GeV			
	1 isolated photon with ET > 20 GeV			
$\sigma_{\mu\nu\gamma}$ =(51.8+38.8)*1.4pb	MET > 30 GeV, 40GeV < M _T < 250Ge, Jet veto, $\Delta R(\ell\gamma)$ >0.7			
$Z \gamma \rightarrow \ell^+ \ell^- \gamma$	2 isolated leptons with $P_T > 20$ GeV, opposite charges, $\Delta R(\ell) > 0.2$,			
- 20.2*1.4mh	$ M_z$ -Mee/ $\mu\mu $ < 10 GeV, one photon with PT>20GeV, Jet veto			
σ _{μμγ} = 20.2*1.4pb	Δ R(<i>t</i>γ)>0.7, M_z-Meeγ/μμγ > 30 GeV 19			
04/14/2008	H.Yang - Diboson Physics at LHC			

Boosted Decision Trees

Relative new in HEP – MiniBooNE, BaBar, D0(single top discovery), ATLAS
 Advantages: robust, understand 'powerful' variables, relatively transparent, ...

"A procedure that combines many weak classifiers to form a powerful committee"

- Split data recursively based on input variables until a stopping criterion is reached (e.g. purity, too few events)
- Every event ends up in a "signal" or a "background" leaf
- Misclassified events will be given larger weight in the next decision tree (boosting)
- Build a set of decisions trees (~100 1000)

H.-J. Yang et.al. NIM A555 (2005)370, NIM A543 (2005)577, NIM A574(2007) 342

Analysis with Boosted Decision Trees

PP \rightarrow WW \rightarrow evµv analysis using ATLAS fully simulated MC datasets (~ 30 Million events).

Diboson Results with 1fb⁻¹ Int. Lumi

Diboson mode	Signal	Background	N_{σ}	Analysis (signal eff.)	σ_{stat}^{signal}
$W^+W^- ightarrow e^\pm u \mu \mp u$	419.9 ± 3.5	80.8 ± 8.0	47	BDT (eff=15.2%)	4.9%
$W^+W^- ightarrow \mu + u \mu^- u$	$90.3 {\pm} 1.6$	$20.2{\pm}2.8$	20	BDT (eff=6.6%)	10.5%
$W^+W^- ightarrow e^+ u e^- u$	$78.0{\pm}1.6$	35.4 ± 3.6	13	BDT (eff=5.7%)	11.3%
$W^+W^- ightarrow \ell^+ u \ell^- u$	103.1 ± 2.6	16.6 ± 2.0	25	Cut based (eff=2.0%)	9.9%
$W^{\pm}Z \rightarrow \ell^{\pm} \nu \ell^+ \ell^-$	$\begin{array}{c} 152.6 \pm 1.7 \\ 53.4 \pm 1.6 \end{array}$	$\begin{array}{c} 16.1 \pm 2.5 \\ 8.0 \pm 1.1 \end{array}$	38 19	BDT (eff=17.9%) Cut based (6.3%)	8.1% 13.7%
$ZZ \rightarrow 4\ell$	16.5 ± 0.1	1.9 ± 0.2	7.2	Cut based (eff=7.7%)	24.6%
$ZZ \rightarrow \ell^+ \ell^- \nu \overline{\nu}$	10.2 ± 0.2	5.2 ± 2.0	3.7	Cut based (eff=2.6%)	31.3%
$W\gamma ightarrow e u \gamma$	1901 ± 77	1474 ± 147	50	BDT (eff=6.7%)	2.3%
$W\gamma ightarrow \mu u \gamma$	2976 ± 121	2318 ± 232	62	BDT (eff=10.5%)	1.8%
$Z\gamma ightarrow e^+e^-\gamma$	337.4 ± 12	187.2 ± 19	25	BDT (eff=5.5%)	5.4%
$Z\gamma { ightarrow}\mu^+\mu^-\gamma$	$774.8\pm\!25$	466.7 ± 47	36	BDT (eff=12%)	3.6%

SM Diboson Production at LHC

 Model independent effective Lagrangian for charged triple gauge boson interactions with anomalous couplings (C & P Conservation)

$$L/g_{WWV} = ig_1^V (W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + i\kappa^V W_{\mu}^* W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{M_W^2} W_{\rho\mu}^* W_{\nu}^{\mu} V^{\nu\rho}$$

where V = Z, γ .

- In the Standard Model: $g_1^V = \kappa_V = 1$ and $\lambda_V = 0$.
- Five anomalous coupling parameters: Δg_1^{Z} , $\Delta \kappa_Z$, λ_Z , $\Delta \kappa_\gamma$, and λ_γ 04/14/2008 H.Yang - Diboson Physics at LHC 10

Probing Anomalous TGCs in ATLAS

- To probe the anomalous couplings we need a model of the kinematic distributions for various couplings. We use:
 - NLO generators
 - MC@NLO produces events that are fully simulated in ATLAS
 - BHO MC generates events with anomalous couplings

- Reweighting
 - Using kinematic distributions from BHO we reweight the fully simulated MC@NLO events to produce expected distributions for a range of anomalous couplings.

Anomalous spectra and reweighting ratio

- The M_T(WW) spectrum for W⁺W⁻ events with anomalous coupling parameters using the BHO Monte Carlo.
- At right are the 'weights = $d\sigma(non-SM)/d\sigma(SM)$ ' used to reweight fully simulated events.

$M_{\rm T}(WW)$ sensitive to WWZ & WW γ couplings

- Binned likelihood comparing mock SM observations to a SM profile & two reweighted anomalous profiles
- Using 10 bins from 0-500GeV and one overflow bin.
- In addition, the three decay channels, ee, eµ, and µµ, are binned separately for a total of 33 bins.

2D anomalous TGC sensitivity using M_T (WW)

H.Yang - Diboson Physics at LHC

ATLAS TGC sensitivity for 1.0 fb⁻¹

95% CL intervals for anomalous TGCs, cutoff Λ = 2 TeV

Diboson	λ_z	$\Delta \kappa_{z}$	Δg_1^z	$\Delta \kappa_{\gamma}$	λ_{γ}
WZ(ATLAS)	[-0.028,0.024]	[-0.203,0.339]	[-0.021,0.054]		
1.0 fb ⁻¹					
WZ(D0)	[-0.17,0.21]	[-0.12,0.29]	$\Delta g_1^z = \Delta \kappa_z$		
1.0 fb ⁻¹			-		
WW(ATLAS)	[-0.108,0.111]	[-0.117,0.187]	[-0.355,0.616]	[-0.240,0.251]	[-0.259,0.421]
1.0 fb ⁻¹					
WW(LEP)	$\lambda_{z} = \lambda_{y}$	$\Delta \kappa_z = \Delta g_1^z$	[-0.051,0.034]	[-0.105,0.069]	[-0.059,0.026]
	Ζγ	- $\Delta\kappa_{ m \gamma}{ m tan^2}\theta_{ m w}$			
Wγ(ATLAS)				[-0.43,0.20]	[-0.09,0.04]
1.0 fb ⁻¹					
Wγ(D0)				[-0.88, 0.96]	[-0.2,0.2]
0.16 fb ⁻¹					

Summary

- The Diboson analyses use ~ 30 M ATLAS fully simulated datasets.
- WW, WZ, W γ and Z γ signal can be established with statistical sensitivity better than 5 σ for the first 0.1 fb⁻¹ integrated luminosity, and ZZ signal can be established with 1.0 fb⁻¹ data.
- The anomalous triple gauge boson coupling sensitivities from LHC/ATLAS can be significant improved over the results from Tevatron and LEP using the first 1.0 fb⁻¹ data.
- SM Diboson productions are important control samples for Higgs, SUSY, Technicolor, G, Z' particle searches with diboson final states.

LHC will start collisions in 2008, please still tuned !

Backup slides

Systematic Uncertainties

- Signal systematics ~9%
 - Luminosity measurement 6.5%
 - PDF assumption 3%
 - NLO scaling 5%
 - Particle ID 3%
- Background systematics ~18% (in addition to the above)
 - MC sample statistics 15% (may drop to 10%)
 Calibration on lepton, jet energy 5%
- The systematic errors start to dominate the cross-section measurement uncertainties after 5-10 fb⁻¹.

ATLAS TGC sensitivity for 10 fb⁻¹

95% CL intervals for anomalous TGCs compare with Tevatron and LEP, cutoff Λ = 2 TeV

Diboson, (fit spectra)	λ_Z	$\Delta \kappa_Z$	Δg_1^Z	$\Delta \kappa_{\gamma}$	λ_γ
WZ, (M_T)	[-0.015, 0.013]	[-0.095, 0.222]	[-0.011, 0.035]		
$W\gamma$, (p_T^{γ})				[-0.26, 0.07]	[-0.05, 0.02]
WW, (M_T)	[-0.040, 0.038]	[-0.035, 0.073]	[-0.149, 0.309]	[-0.088, 0.089]	[-0.074, 0.165]
WZ, (D0) (1.0fb ⁻¹) $W^{\pm}\gamma$ (D0)	[-0.17, 0.21]	[-0.12, 0.29]	$(\Delta g_1^Z = \Delta \kappa_Z)$		
(0.16fb^{-1}) $WW, (\text{LEP})$ $(\lambda_{\gamma} = \lambda_{Z}, \Delta \kappa_{Z})$	$g = \Delta g_1^Z - \Delta \kappa_\gamma \tan^2$	$ heta_W$)	[-0.051,0.034]	[-0.88,0.96] [-0.105,0.069]	[-0.2,0.2] [-0.059,0.026]

Neutral TGCs Sensitivity (10 fb⁻¹)

$$g_{ZZV}\Gamma^{\alpha\beta\mu}_{ZZV} = e\frac{P^2 - M_V^2}{M_Z^2} \left[if_4^V (P^\alpha g^{\mu\beta} + P^\beta g^{\mu\alpha}) + if_5^V \varepsilon^{\mu\alpha\beta\rho} (q_1 - q_2)_\rho \right]$$

	f_4^Z	f_5^Z	f_4^{γ}	f_5^{γ}
$ZZ \to \ell\ell\ell\ell$	[-0.010, 0.010]	[-0.010, 0.010]	[-0.012, 0.012]	[-0.013, 0.012]
$ZZ \rightarrow \ell\ell\nu\nu$	[-0.012, 0.012]	[-0.012, 0.012]	[-0.014, 0.014]	[-0.015, 0.014]
Combined	[-0.009, 0.009]	[-0.009, 0.009]	[-0.010, 0.010]	[-0.011, 0.010]
LEP Limit	[-0.30, 0.30]	[-0.34, 0.38]	[-0.17, 0.19]	[-0.32, 0.36]

- Binned likelihood comparing mock SM observations to a SM profile and two reweighted anomalous profiles
- M_T(WZ) was found to be the most sensitive kinematics quanitity (P_T(Z), M(II), and others are also useful, but not as sensitive).
- Using 10 bins from 0-500GeV and one overflow bin.

94/14/2908 January 2008

TGC sensitivity using $M_T(WZ)$ with 0.1fb⁻¹ integrated luminosity

One parameter limits (assuming other couplings are SM)

 $-0.4 < \Delta \kappa_Z < 0.6$ $-0.06 < \Delta g_1^Z < 0.1$ $-0.06 < \lambda_Z < 0.05$

Tevatron results

- $-0.12 < \Delta \kappa_z < 0.29$ 2 TeV D0 with 1.0 fb^{-1} -0.17 < $\lambda_z < 0.21$
- $-0.82 < \Delta \kappa_z < 1.27$ 2 TeV CDF with 1.9 fb^{-1}
- $-0.13 < \lambda_z < 0.14$

94/14/2008

Dirett Mangdir Dibosom Chyslositats bit G-Alan

TGC sensitivity using $M_T(WZ)$ with 30fb⁻¹ integrated luminosity

One parameter limits (assuming other couplings are SM)

 Λ =2 TeV -0.08 < $\Delta \kappa_Z$ < 0.17 -0.01 < Δg_1^Z < 0.008 -0.005 < λ_z < 0.023 Λ =3 TeV -0.07 < $\Delta \kappa_Z$ < 0.13 -0.003 < Δg_1^Z < 0.018 -0.008 < λ_z < 0.005

Diret Andrigdir Dibeson Chyslic stats bloc Alan Wilson

Systematic Error Effect on TGCs 2D Limits, Λ =2TeV, using P_T(Z)

No systematic errors

9.2% signal, 18.3% background

Experimental Advantages

- W's and Z's leptonic decay final states provide experimentally clean signals.
- Identification of W and Z bosons are well established.
- W and Z masses provide a valuable constraint.
- They are good sources of high Pt leptons
 Efficient observation with low background
 - Trigger at low momentum threshold