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ABSTRACT. An event reweighting technique incorporated in multiggeitraining algorithms has

been developed and tested with Artificial Neural Network&lf and Boosted Decision Trees
(BDT). The performance of the ANNs and BDTs resulting frons #vent reweighting training is

compared to the performance from conventional equal everghiing training. The comparison

is performed in the context of physics analysis in the ATLA®eariment at the Large Hadron

Collider (LHC), which will explore the fundamental naturé matter and the basic forces that
shape our universe. We demonstrate that the event rewsggtechnique provides an unbiased
method of multivariate training for event pattern recoigmit
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1. Introduction

Artificial Neural Networks (ANN) and Boosted Decision Tre@DT) [fl-f] are two important
data analysis tools that have wide application in High Epd?gysics experiments for particle
identification and for event pattern recognitigh [} 10] tlBmethods 'train’ the 'networks’ or the
'trees’ based on a set of 'signal’ and 'background’ featpdg/sical quantities) to obtain a power-
ful discriminant variable that distinguishes signal froackground. This process is called 'event
pattern recognition’ in physics data analysis. In the catie@al ANN and BDT algorithms for
high energy physics analysis, the training events (indgdiignal and background) are initialized
with equal weights. The equal event weight training techaigorks fine if the Monte Carlo (MC)
samples from different physics processes used for tramiagenerated based on their production
rates. In physics studies, we need to have very large MC drackd’ event samples to determine
the rates of the misclassified events from different praze#sat contaminate the signal (normally
a few times more MC data than real data is needed for a certgrated luminosity). However,
for hadron colliders such as the Large Hadron Collider at NEEHC, http://cern.ch/) and Teva-
tron at Fermilab (http://www.fnal.gov/), it is unrealistand inefficient to generate MC data for all
the physics processes with full detector simulations basettieir production rates. This is simply
because of limited CPU time and data storage capacity. Tolatenand reconstruct an event for
the ATLAS experiment, typically, it would take about 10 mies of CPU time and about 2.5 MB
of storage space per event. The simulation time is many safanagnitude longer than the event
created from the beam collisions.

Combining statistically limited MC events from differenhysics processes raises a natural
guestion on the multivariate training process in event Wing. Suppose that 100K MC events are



generated for each of background A and background B. Supimosédition, we expect 80% of the
background to be from A and 20% from B. What is proposed in tlemereweighting technique
is that the events are reweighted for training, so that 80%hetotal weight is from A and 20%
is from B, i.e. each event from A has 4 times the weight as antdvem B. We implemented this
idea in ANN and BDT training programs and tested this tealmiop the context of the ATLAS
experiment with fully simulated MC datasets.

ATLAS (http://atlas.web.cern.ch/) is one of two generajgmse detectors at the LHC (a 27 km
circumference particle accelerator that will collide g head-on with a center of mass energy of
14 TeV) being built at the European Center for Nuclear Rese@ERN) in Geneva, Switzerland.
The ATLAS experiment is designed to search for signals thaildvrespond to the electroweak
symmetry breaking. Some theoretic models predicted sgnaih as standard model Higgs bosons,
supersymmetric particles, and new bosons from extra diimess Discovering any one of those
signals at the LHC would be a great breakthrough in our utaledéng of particle physics. The
LHC will begin operation in 2008. A major part of preparing fdHC physics analysis is to develop
and test advanced data analysis tools.

In this paper, we use ATLAS MC samples #Z — ¢v¢/¢ analysis to demonstrate that using
event reweighting technique will provide an unbiased trgjrin ANN and BDT multivariate anal-
ysis. Our 'signal’ is from theN Z triple-lepton decay channelede/, eeuv, uuev and uuuv).
Major backgrounds come from standard model processes stiGZa- jets ZZ andDrell —Yan
Those backgrounds have production rates 3-4 orders of mggniarger than that of the signal
process. Our goals are to maximize signal efficiency, tomige background efficiency and to
understand the uncertainties with limited training and sesnples.

For comparing the performance of the ANN and the BDT with athaiit event reweighting
training, we used the same testing sample (statisticalpirgent of training sample). The main
purpose of this paper is to compare the training performavitteand without event reweighting.
Performance comparisons between ANN and BDT can be founkleirtdntexts of MiniBooNE
neutrino oscillation analysi$][#], 4], DO single top discgvEd] and B-tagging [Z0].

In section 2 we provide the MC signal and background infoiomatincluding the physics
processes, the production cross-sections at the LHC, thesimulated MC event size and the
training sample size after pre-selection. We also givef loléscriptions of physics variables for
both the ANN and the BDT analysis. The event reweightingnirgj techniques for BDT and
ANN are presented in section 3. Performance comparisondifferent weighting methods are
summarized in section 4. Section 5 presents uncertaintly stesults and section 6 gives our
conclusions.

2. MC samples and training variables

Monte Carlo samples used in this study are from the ATLAS Qaing System Commissioning
(CSC) [11] with full detector simulation and reconstruatid-or this study we used a few loose cuts
to pre-select events with the approximate experimentaksige of the signal, then the pre-selected
events are analyzed using the ANN and BDT multivariate mogrto further separate signal from
background events. In talfle 1 we list the MC and pre-seleatiformation for the signaM{ 2) and
background MC events used in this study. This informatiaiuides the total production cross-



sections @ic) [[L3], the triple-lepton decay branching rat®r{, the total number of simulated MC
events Nyc), the number of pre-selected everiti £y, and the number of expected everits,f)
normalized to 1 fb! integrated luminosity (Ldt) after the pre-selection. The initial event weight
for each process is listed in taljle 1 as well. The crossesectrrection factork, in the tablg ]l is
defined as the ratio of the next-to-leading order (NLO) cismssion to the cross-section obtained
from the MC generators. Thus, if we used a NLO MC generater kivalue is 1. Otherwise, if
a LO MC generator is used, the K valuedgNLO)/a(LO) (o denotes the cross-section). The
expected number of events for ) Neyp, and the event'sveightlisted in table[ll are calculated

based on
omc x K x Br x (f Ldt) x Nprecut

Nmc

Nexp =

and

Weight— omc X KxBrx ([ Ldt)‘
Nmc

The integrated luminosity/(Ldt) is a constant (1 fb') for all the MC process, so the event weight
of a given MC process depends on its production cross-seat&ray branching ratio and the total
number of MC events generated\(c). For a given MC process, a larger event weight means lower
statistics for analysis. In general, higher MC statisties desired to reduce statistical uncertainty
for data analysis. Evidently, the event weights vary dracally among the various MC processes
as shown in tablf] 1.

The pre-selection applied loose cuts to all datasets byiriequwo leptons with invariant
mass consistent with thé mass and an additional lepton with missing transverse grierging
a transverse mass consistent with the W boson mass. Thelpaien also requires that at least
one lepton have transverse momentum greater than 20 GeVigty 2he trigger requirements of
the experiment.

The physics variables input into the ANN and BDT traininge aelected based on our ex-
perience with cut-based analysis (optimized to separgteakirom background), and the variable
'Gini” index determined from the decision treef [2]. Thisléx indicates the separation power be-
tween signal and background of a variable. We give briefijg#uns of these variables, separated
into four categories.

e Energy and Momentum
The characteristics of energy and momentum are differem the WZ events and the back-
ground events. For examplkt,events will have larger hadronic jet energies comparedeo th
W Z events, theZ + X background will have lower missing transverse energy arehsd he
energy and momentum variables we used are

— Pf - lepton transverse momentum, three variables (two leftenay from Z, one lepton
decays from W),
— MET - missing transverse energy,

— MET significance which is defined ET/+/3; Et (i), (iis the index counting leptons
and jets),

- E? - vector sum of transverse momentum from leptons M,



MC Process omc(fb) K Br Nmc | Norecut | Nexp/ Tb~1 | Weight
pp—WTZ = ¢rvete 0.3673E+05 1.0| 0.0144| 26550| 6848 136.4] 0.0199
pp—W-Z — (vl 0.2099E+05| 1.0 0.0144| 17450| 5118 88.7] 0.0173
pp—Z/y— (te- 0.8910E+06| 1.5 0.0672| 999742 111 10.0| 0.0898
pp— Z(ete )+ jet(Ejet=10—20GeV) | 0.1360E+08| 1.3| 0.0336| 597281 0 0.0 0.9946
pp— Z(ete )+ jet(Ejet=20—40GeV) | 0.8670E+07| 1.3| 0.0336| 398697 0 0.0 0.9499
pp— Z(ete )+ jet(Ejet=40—80GeV) | 0.4120E+07| 1.3] 0.0336| 397524 0 0.0| 0.4527
pp— Z(ete )+ jet(E jet = 80— 120GeV) | 0.8270E+06| 1.3 0.0336] 397009 0 0.0| 0.0910
pp— Z(ete ) + jet(E jet > 120GeV) 0.3830E+06| 1.3 | 0.0336] 198652 0 0.0| 0.0842
pp— Z(t*17) + jet(E jet= 10-20GeV) | 0.1360E+08| 1.3| 0.0336| 598783 0 0.0 0.9921
pp— Z(t*17) + jet(E jet=20—40GeV) | 0.8670E+07| 1.3| 0.0336 399076 0 0.0] 0.9490
pp— Z(t+17) + jet(E jet=40—80GeV) | 0.4120E+07| 1.3| 0.0336| 398972 0 0.0| 0.4511
pp— Z(1+17) + jet(E jet= 80— 120GeV) | 0.8270E+06| 1.3| 0.0336| 396671 0 0.0| 0.0911
pp— Z(tH17) + jet(E jet > 120GeV) 0.3830E+06| 1.3 | 0.0336] 199046 0 0.0| 0.0840
pp— Z(utu~) + jet(E jet=10—20GeV) | 0.1360E+08| 1.3| 0.0336| 2996413 492 97.5| 0.1983
pp— Z(utu~) + jet(E jet=20—40GeV) | 0.8670E+07| 1.3| 0.0336| 1995792 789 149.7| 0.1898
pp— Z(utu~) + jet(E jet=40—80GeV) | 0.4120E+07| 1.3 | 0.0336| 1189793 1516 229.3| 0.1513
pp— Z(utu~) + jet(E jet= 80— 120GeV) | 0.8270E+06| 1.3 | 0.0336| 397856 1105 100.3| 0.0908
pp— Z(utu~) + jet(E jet > 120GeV) 0.3830E+06 1.3] 0.0336] 199832 1133 94.9| 0.0837
pp— Z(£t0~)(Mz=30—81GeV) 0.4220E+07| 1.3 0.1010| 1000000 16 8.9| 0.5541
pp— Z(¢t¢~)(Mz=81—100GeV) 0.4610E+08| 1.3] 0.1010| 3284999 406 748.1| 1.8426
pp— Z(£+07)(Mz > 100GeV) 0.1750E+07| 1.3] 0.1010| 971000{ 271 64.1| 0.2366
pp— Zuy (Miny > 150GeV) 0.1750E+07 0.8 0.0336] 43000 33 36.1| 1.0940
pp— ZuuJet 0.8270E+06 0.8 0.0336] 35000 20 12.7] 0.6351
pp— Zee(Pt > 100GeV) 0.8270E+06 0.8 0.0336] 46000 11 5.3 0.4833
pp— Zuu (Pt > 100GeV) 0.8270E+06 0.8 0.0336] 33000 42 28.3] 0.6736
pp— Z11 (Pt > 100GeV) 0.8270E+06 0.8 0.0003| 32000 41 0.3] 0.0069
pp—tt 0.7590E+06| 1.0 | 0.5550| 604750/ 1071 746.0| 0.6966
pp— Zy (Pt > 25GeV) 0.4510E+05) 1.0| 0.0672| 46800 43 2.8| 0.0648
pp—WTW- —efve v 0.1133E+06| 1.0| 0.0120| 41950 9 0.3] 0.0324
pp—WTW- —efvu—v 0.1133E+06| 1.0 0.0120| 45900 22 0.7] 0.0296
pp—WTW- —efvtv 0.1133E+06| 1.0 0.0120 71000 7 0.1] 0.0191
pp—WTW- = ptve v 0.1133E+06| 1.0 0.0120 47000 18 0.5 0.0289
pp—WTW- = utvu—v 0.1133E+06) 1.0| 0.0120| 48950 30 0.8 0.0278
pp—WTW- = utvr—v 0.1133E+06| 1.0| 0.0120| 44000 8 0.2] 0.0309
pp—WTW- = trve v 0.1133E+06| 1.0 0.0120 47700 2 0.1] 0.0285
pp—WTW- — 1Tvu—v 0.1133E+06| 1.0| 0.0120] 45800 8 0.2| 0.0297
pp—WTW- = 1Tvr v 0.1133E+06| 1.0| 0.0120] 34850 0 0.0| 0.0390
pp— ZZ— (T0— 00~ 0.1886E+05 1.0| 0.0045| 35700| 8597 20.4| 0.0024

Table 1. Breakdown of MC samples used for ZW analysis.

— Elecoll - total recoil transverse energy.

e Lepton isolations

The leptons from th&V andZ decays are isolated, but leptons from the QCD jets are not
isolated. Typically, the QCD jets have multiple tracks aadyér energy deposition around

Pr(W 2) - transverse momentum @ Z bosons,

the leptons. The isolation variables we used are

'SO - number of charged tracks &R < 0.4 cone around a leptoAR= /(A@)2 + (An)2),

> EjTet - sum of transverse energy from each jet,

H; - scalar sum of transverse momentum from jets, leptondviiad,

three variables (two leptons decay from Z, one lepton defrays W),




-3 P{SO - sum of trackPr in aAR < 0.4 cone around a lepton,
-5 Elso - sum of jet transverse energy AR < 0.4 cone around a lepton,
— flS° - fraction of energy = [EfR < 0.4)-EQAR < 0.2)] / E£.

e Event topologies
The following variables are selected to suppress top and {@C&vents and to separate fake
lepton events from thé/ Z signal:

— AR(¢,¢") - separation between two leptons, 2 variables (one leptoaydefrom W, the
other lepton decays from Z),

— AA - vertex difference between leptons in transverse planpdgnparameter), 2 vari-
ables (one lepton decays from W, the other lepton decaysZjom

e Mass information
The mass information is used to reduce QCD #rzhckground events with leptons (or fake
leptons) that do not decay frothandW. Two variables are used in our analysis:

— My, - invariant mass of two leptons frohdecays,
— Mt (¢,MET) - transverse mass of a lepton avi& T (neutrino) fromW decays.

For variable distribution shape comparisons, we show samegg and momentum variable
distributions for signal and background in figfife 1 and soaréble distributions related to lepton
isolation, event topology and mass in figfire 2. All the evémthe plots are passed pre-selection
cuts and each signal (black histograms) and backgroundbditsbn is normalized to the same area.

Figure[B and []4 show the same variable distributions with eweasighting. In these plots,
the background histograms are stacked, with areas refietiinrelative weights. For comparison,
total background events and total signal events are nazathtpb the same area, respectively.

From the variable distributions (both for signal and baokapd), we found that a single vari-
able has limited power to separate signal from background, lBhen combining these variables
using ANN or BDT, the signal and background could be well saeal, particularly when the
proper event reweighting algorithm is used in the multatianalysis.

The BDT program provides a sensitive measure to indicateitiveal and background sepa-
ration effectiveness of each input variable based on thé iGdlex contribution [[R]. We list the
Gini index contributions of the input variables in our arsdyfor both event reweighting and equal
weighting cases in tablg 2. For each variable, a larger Gaex indicates a relatively larger con-
tribution to the overall signal to background separationonfrthe Gini index listed in this table
we know that the lepton isolation and mass variables areceglyeeffective at separating the WZ
signal from various background events. However, for equagititing training, the BDT algorithm
tends to focus on separating the WZ signal from the ZZ backutanainly because the ZZ events
dominate the background training sample after the pressefe

3. Event reweighting training technique

As we mentioned in section 2, the event weights of various Miggsses are quite different. MC
samples with larger event weights represent lower stegisélative to cross-section and vice versa.
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Figure 1. Distributions of the transverse momentum of leptons (tdf),l¢he transverse momentum of
the WZ system (top right), the missing transverse energh®fetvent (bottom left) and the vector sum of
transverse momenta from leptons ad& T (bottom right). Among the histograms, black indicates ZW
signal events, red indicatés green indicates Z plus jets, blue indica®s — ¢¢¢¢ and pink indicates a
combination of all backgrounds. All histograms are norzelito the same area for comparison.

For instance, the M@p— ZZ— (¢¢¢ sample has a total of 35700 events (before the pre-selgction
A total cross section of 18860 fb (NLO) and a four-lepton geloeanching ratio of 0.0045 means
that for 1fb ! integrated luminosity the total number of expeci#d — ¢¢¢¢ is about 85. Thus,
theZZ event weight is 0.0024, as listed in talﬁle 1. In contrast[tedl-Yan sample at the Z mass
(pp— Z(¢*¢~)(Mz=81—100GeV)) contains 3.28 million events and yet the NLO cross-section
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Figure 2. Distributions of the number of charged tracks around a lept@ cone ofAR = 0.4 (top left), the
two lepton separation iAR (top right), the invariant mass of two leptons (bottom lefi)d the transverse
mass of leptons combined wWitHET (bottom right). Among the histograms, black indicates Z\¢hsil
events, red indicates, green indicates Z plus jets, blue indicaf&— (¢¢¢ and pink indicates a combination
of all backgrounds. All histograms are normalized to theesanea for comparison.

and branching ratio indicate that 1.85 times as many evér®$ million) are expected in flb—*
integrated luminosity, thus this sample has a weight of.1.85

If we treat these MC events from different sources equallggisonventional training tech-
niques, then multivariate training methods for ANNs and BDWill focus disproportionately on
the MC events with lower event weights. This is because thasats have a higher probability of
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Figure 3. Distributions of the transverse momentum of leptons (tdf),l¢he transverse momentum of
the WZ system (top right), the missing transverse energh®fetvent (bottom left) and the vector sum of
transverse momenta from leptons ad& T (bottom right). Among the histograms, black indicates ZW
signal events, red indicatés green indicates Z plus jets, blue indica®s — ¢¢¢¢ and pink indicates a
combination of all backgrounds. Signal and total reweidltackground events are normalized to the same
area for comparison. Major background are stacked indigalie relative contributions.

being selected for the ANN training relative to their ratepobduction in the experiment. In the
BDT training process, a sample with larger statistics nedatio cross-section will have relatively
larger total event weight. This will affect which variablage chosen to be split in the tree and
the value at which the splitting cut occurs. For example,un analysis undue emphasis would
be put on the variables separating B background from signal. To avoid this training prejudice
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Figure 4. Distributions of the number of charged tracks around a lept@a cone oAR = 0.4 (top left), the
two lepton separation iAR (top right), the invariant mass of two leptons (bottom lefi)d the transverse
mass of leptons combined wWitHET (bottom right). Among the histograms, black indicates Z\¢hsil
events, red indicates, green indicates Z plus jets, blue indicaf&— (¢¢¢ and pink indicates a combination
of all backgrounds. Signal and total reweighted backgroewvehts are normalized to the same area for
comparison. Major background are stacked indicating ttaive contributions.

we used event reweighting for the ANN and BDT training. Asstrated above, the event weights
for different physics processes are independent of peeteh as shown in the Weight definition
expression in section 2 and talple 1. As will be describedérfoliowing subsections, the sums of
all the weights of training signal or background eventsrgite-selection are normalized to 1.



Training Variables Gini Index Contribution(%)
Event Reweighting Equal Weighting

PrZ—() 2.41 1.46

10 (tracks aroun@ — £~ in AR < 0.4 cone) 4.53 2.13
Pr(Z— (") 1.93 1.34

10 (tracks aroun@ — £+ in AR < 0.4 cone) 7.65 2.49
Pr(W* — %) 4.16 3.01
5 PisO (tracks aroundV* — ¢* in AR < 0.4 cone) 11.88 11.80

I%0 (tracks arountv: — /* in AR < 0.4 cone) 20.56 14.56
S E%"O (jets aroundV* — ¢* in AR < 0.4 cone) 2.07 5.83
f1s° 2.05 457
DA(Z — 01 WE — (F) 3.26 2.73
AR(Z = (T W= S %) 2.63 2.49
AAZ — 0~ W — %) 4.17 3.12
AR(Z — (— W= = %) 3.05 3.07
MET-missing transverse energy 3.90 10.26
Pr(W2) 1.59 3.88
My, 9.70 4.22
Mt (¢,MET) 7.55 6.67
Hi 0.91 0.94
5 EX 0.91 1.73
ER 0.72 6.03
MET/\/3iEr(i) 0.95 4.10
Erecol 3.42 3.58

Table 2. Gini index contributions of input variables for BDT traigjrusing event reweighting and equal
weighting techniquesZ — ¢ means lepton decays from Z awd— ¢ means lepton decays from W.

3.1 BDT reweighting

In the BDT training process we start williy pre-selected signal ardyg pre-selected background
events. In the traditional BDT algorithr] [B, 3] using equatet weighting for training, the initial
weights of signal and background events higg* and Nggl, respectively. The total signal event
weight and the total background event weight are each naretato 1. We implement the event
reweighting training technique for BDT by initializing tiveeights of all the training events to the
event weightsW Ts(i),i = 1,2,...,Ns for signal eventsW Tyy(i),i = 1,2,...,Npg for background
events) listed in tablf 1 , then we normalize the total signaht weight and the total background
event weight each to 1. For signal events, the initial weighBDT training is

Wi(i) =WTg(i)/ WTOTE,i =1,2,...,Ng,
where N
WTOE = SWT(i).
2"F
For background events, the initial weight for BDT trainisg i

Wtbg(]) :W-IBQ(J)/WTO-B@J = 1727"‘5Nbga

—10 -



where
Nbg

WTOThg = Z Wog(})-
=1

In our analysis, we have used the boost algorithm[[2] withe = 0.01. For the BDT training we
used 1000 tree iterations and 20 terminal leaves per dadise.

3.2 ANN reweighting

For conventional ANN training both signal and backgroundrgs are selected randomly with the
same probability for each training iteration. This is the&i&@gevent weighting training technique.
When we have multiple sources of background events witlerdifft production cross-sections
from the proton-proton collisions the equal event weigitiaining technique may not work well,
particularly when the number of background events in thmitrg sample are not proportional
to the production cross-sections. Effectively, the backgd events with large cross-section are
underrepresented, and don't receive appropriate trairog we developed the event reweighting
algorithm to improve the training process for ANN. The badiea of the event reweighting tech-
nique is to modify the probability of a given event to be sedddor the ANN training. For all the
MC events, the reweighting (determination of the probghikhould be automatically included in
the ANN program, which reflects the weights of the underlyiinysics. We briefly describe our
algorithm below.

Suppose we have three different background samples, A, Bafitlese samples hai, Ng
andNc events, respectively. Based on production cross-sectindghe pre-selection efficiencies,
we expect the background contributions from sample A, B,@rde 50%, 30% and 20% respec-
tively. Thus, sample A events should have 50% probabilithacselected for training, sample B
and C should have 30% and 20% probabilities to be selectettdiming, respectively. So, the
probabilities of selecting a single training event in backond samples A, B and C are 50%)/
30%MNg and 20%Nc, respectively.

The general algorithm, as implemented in the code is thevidtig,

e start with weights of training signal and background evéisted in table]L,
wt(j), j=1, 2,...,N; (i = signal or background),

e calculate accumulated weights for evgnivt_sur(j):
wt_sunt(j) = wt_suntj — 1) +wt(j), j =2,...,N,

e generate a random number with uniform distribution in a eaofyO, wt_sum(N)],

e select an event for the ANN training by minimizing the getedarandom numbeR, and
the accumulated weightt_sun{i): min|R, —wt_sunti)|, i=1,...,N,

e iterate the above process many times for the ANN training.

The event reweighting training technique can be appliechtaous ANN algorithms. For this
analysis, we used a back-propagation neural network withettayers, one input, one hidden and
one output layer. There are 22 nodes in both the input andehithyers, and there is one output
node. The neuron response is a sigmoid function. The legmaie isn = 0.05, the momentum is
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Figure 5. Distributions of the ANN output for testing samples assugnittegrated luminosity of 1 fot.

a = 0.07 and 1,000,000 training cycles are used for the ANN trginithe general description of
the ANN can be found in section 6.8 of the TMVA User guifle [1].

4. Application and results

The MC signalW Z — ¢v/¢ and all the background pre-selected events are split indon@arly
equal samples. Odd and even numbered events in each MC paresgrouped into sample A and
B, respectively. Sample A and B are statistically indepahdg/e use sample A for training and
then use sample B for testing.

The training sample had 5983 signal and 7907 backgroundsevdie testing sample had
5983 signal and 7894 background events. We performed the &iiNhe BDT analysis by using
equal weight and reweighting techniques. We show both tesulfigure[b and figurg] 6. The
results shown in these plots are for the testing sample.ré&shows the ANN analysis results
and figurd p shows the BDT results. In both figures, the tosbbw the analysis with the event
reweighting technigue and the bottom plots show results thi¢ equal weight technique. In those
plots, the solid histograms are for the signal and the dditetbgrams are for the backgrounds.
Both signal and backgrounds are normalized to 1 fintegrated luminosity.
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Figure 6. Distributions of the BDT output for testing samples assuiitiegrated luminosity of 1 fo'.

As we expected, the signal events are mainly distributechiaraa close to 1 in the ANN
output spectrum, and the background events are distritolsd to O (see figurlé 5). The top plot of
figure[%, the ANN output spectrum produced with the reweightlgorithm, shows that the signal
distribution is much sharper around an ANN output of 1. Hosvewith equal weight training,
the signal distribution near 1 is smeared out. As a resudtsthnal selection efficiency decreases
significantly when using conventional technique of tragnimith equal weights.

Similarly, we observed in figurg 6 that the BDT output with veeweighting training has
much better signal to background separation power (top ptrhpared to that with equal weight-
ing event training (bottom plot).

By choosing the selection cuts on the ANN or the BDT outputspewe can determine the
number of selected signal and background events as wekkaxtrerimental signal to background
ratio. Our comparison of the analysis performance usinfgrift training techniques focuses on
the relative difference between signal and backgrounds the look at the number of selected
signal events versus background events as the selectioanes.

Comparisons of reweighting and equal weighting techniquiéls the ANN and BDT anal-
yses are shown in figuf¢ 7, where we plot the expected numbdeaasiground events versus the
number of signal events corresponding to an integratednasity of 1 fo-* by varying the ANN
and the BDT output selection cuts. The black solid curveasgmts results from the BDT with
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Figure 7. Number of background events versus number of signal eventte$ting samples assuming
integrated luminosity of 1 fo'.

event reweighting for training; the red dashed curve shasalts from the BDT with equal event
weighting; the green dotted curve indicates results froenANN with event reweighting; and, the
blue dash-dotted curve shows results from the ANN with equaht weighting for training. From
these curves we see that, for the same number of signal esedatded using ANN or BDT, using
the event reweighting technique gives much lower backgiauent contamination compared to
equal event weighting.

The numerical comparisons are shown in tgble 3. We vary tleetszn cuts on the ANN and
BDT output spectra to keep the same number of signal evedtsham compare the background
contamination and the ratio of background contaminatiderddned from reweighting and equal
event weighting techniques. Our analysis shows that, coedpaith the equal weighting training,
the ANN and BDT trained with event reweighting reduce thedgaosund by factors of abouts 7
and 6~ 10, respectively.

5. Uncertainty studies

The reweighting technique will rely on our knowledge of tireret production rates (cross-sections)
in the colliders. Thus, it is important to understand thetivaliate training stability with respect
to the production cross-section uncertainties of the MQ@gsees. We looked at BDT training
to estimate these effects. We introduced 20% uncertaitdi¢ise event weights for our training
samples, while for the testing sample we have kept the 'cBrexent weights. Compared with
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Nsignal 60| 80| 100| 120| 140| 160
Npg for ANN-equal-weighting | 30.5| 51.9 | 72.4 | 104.7| 133.3| 177.6
Npp for ANN-event-reweighting 5.8 | 7.7 9.8| 14.7| 25.9| 34.9
Ratio= Npg1 /Nog for ANN 53| 6.7| 74 7.1 5.1 5.1
Npgs for BDT-equal-weighting | 18.5| 39.4| 60.7| 69.1| 88.9| 110.1
Npgs for BDT-event-reweighting| 3.1| 4.0| 6.3 84| 13.2| 19.3
Ratio= Npg3/Nogs for BDT 60| 99| 96| 82| 67| 57

Table 3. Number of background eventl(;) versus number of signal eventssyna) using the ANN and
BDT discriminating algorithms with equal weighting and et/eeweighting training techniques.
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Number of Events for Training

Figure 8. Background efficiencies versus number of training eventgddous signal efficiencies. Training
events are selected randomly but the testing sample is foeetthé comparison. The BDT training-testing
process is repeated 50 times to obtain average backgroficidrefies and RMS for a set of fixed signal
efficiencies.

the original BDT performance without cross-section uraiaties, the relative changes of the BDT
performance with 20% cross-section uncertainties arethess about 6%, e.g. while keeping the
same number of signal events, the background contaminat@eased by 4-7% depending on
cuts. This uncertainty is well within the 15-25% relative d@dean-Squared (RMS) errors of
background efficiencies which will be described below.
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Generally, a large training sample is desired for trainmmultivariate algorithms. Itis impor-
tant to understand what is a sufficient number of trainingnes/euch that the background efficiency
is insensitive to training sample size. To this end, we stidine background efficiencies and RMS
errors as a function of the number of training events for @&ixed signal efficiencies as shown in
figure[. The training events are selected randomly withraxegshent from the training sample with
5983 signal and 7907 background events for the BDT trairdng,a statistically independent MC
sample with 5983 signal and 7894 background events is usaddting. For each training point,
the BDT training-testing process is repeated 50 times wilfffarent set of training samples and
a fixed testing sample to obtain the average backgroundesftigds and RMS errors for a given
set of signal efficiencies. Figufg 8 indicates that fewer Mengs for training will result in larger
background contaminations, presumably because the nushB&€ events is insufficient to fully
train the BDTs. We also note that with at least 10000 trairémgnts the background efficiency
becomes relatively stable. We have used about 14000 evartisihing, thus we expect the bias
due to training sample size should be small.

6. Conclusions

We have developed and tested an event reweighting techtidueused when training multivari-

ate pattern recognition processes. This technique is s&igeto train the pattern recognition in an
unbiased way, particularly for multi-background processéh limited MC statistics. For the AT-

LAS W Z — ¢vi¢ analysis, with large background contributions from difer physics processes,
we found that for good performance using the ANN and the BDalais one should employ event
reweighting in the training process.
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