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1. Introduction

Artificial Neural Networks (ANN) and Boosted Decision Trees(BDT) [1 – 6] are two important
data analysis tools that have wide application in High Energy Physics experiments for particle
identification and for event pattern recognition [7 – 10]. Both methods ’train’ the ’networks’ or the
’trees’ based on a set of ’signal’ and ’background’ features(physical quantities) to obtain a power-
ful discriminant variable that distinguishes signal from background. This process is called ’event
pattern recognition’ in physics data analysis. In the conventional ANN and BDT algorithms for
high energy physics analysis, the training events (including signal and background) are initialized
with equal weights. The equal event weight training technique works fine if the Monte Carlo (MC)
samples from different physics processes used for trainingare generated based on their production
rates. In physics studies, we need to have very large MC ’background’ event samples to determine
the rates of the misclassified events from different processes that contaminate the signal (normally
a few times more MC data than real data is needed for a certain integrated luminosity). However,
for hadron colliders such as the Large Hadron Collider at CERN (LHC, http://cern.ch/) and Teva-
tron at Fermilab (http://www.fnal.gov/), it is unrealistic and inefficient to generate MC data for all
the physics processes with full detector simulations basedon their production rates. This is simply
because of limited CPU time and data storage capacity. To simulate and reconstruct an event for
the ATLAS experiment, typically, it would take about 10 minutes of CPU time and about 2.5 MB
of storage space per event. The simulation time is many orders of magnitude longer than the event
created from the beam collisions.

Combining statistically limited MC events from different physics processes raises a natural
question on the multivariate training process in event weighting. Suppose that 100K MC events are
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generated for each of background A and background B. Suppose, in addition, we expect 80% of the
background to be from A and 20% from B. What is proposed in the event reweighting technique
is that the events are reweighted for training, so that 80% ofthe total weight is from A and 20%
is from B, i.e. each event from A has 4 times the weight as an event from B. We implemented this
idea in ANN and BDT training programs and tested this technique in the context of the ATLAS
experiment with fully simulated MC datasets.

ATLAS (http://atlas.web.cern.ch/) is one of two general purpose detectors at the LHC (a 27 km
circumference particle accelerator that will collide protons head-on with a center of mass energy of
14 TeV) being built at the European Center for Nuclear Research (CERN) in Geneva, Switzerland.
The ATLAS experiment is designed to search for signals that would respond to the electroweak
symmetry breaking. Some theoretic models predicted signals such as standard model Higgs bosons,
supersymmetric particles, and new bosons from extra dimensions. Discovering any one of those
signals at the LHC would be a great breakthrough in our understanding of particle physics. The
LHC will begin operation in 2008. A major part of preparing for LHC physics analysis is to develop
and test advanced data analysis tools.

In this paper, we use ATLAS MC samples forWZ→ ℓνℓℓ analysis to demonstrate that using
event reweighting technique will provide an unbiased training in ANN and BDT multivariate anal-
ysis. Our ’signal’ is from theWZ triple-lepton decay channels (eeeν , eeµν , µµeν andµµµν ).
Major backgrounds come from standard model processes such as tt̄, Z+ jets, ZZ andDrell −Yan.
Those backgrounds have production rates 3-4 orders of magnitude larger than that of the signal
process. Our goals are to maximize signal efficiency, to minimize background efficiency and to
understand the uncertainties with limited training and test samples.

For comparing the performance of the ANN and the BDT with or without event reweighting
training, we used the same testing sample (statistical independent of training sample). The main
purpose of this paper is to compare the training performancewith and without event reweighting.
Performance comparisons between ANN and BDT can be found in the contexts of MiniBooNE
neutrino oscillation analysis [2, 4], D0 single top discovery [9] and B-tagging [10].

In section 2 we provide the MC signal and background information, including the physics
processes, the production cross-sections at the LHC, the total simulated MC event size and the
training sample size after pre-selection. We also give brief descriptions of physics variables for
both the ANN and the BDT analysis. The event reweighting training techniques for BDT and
ANN are presented in section 3. Performance comparisons fordifferent weighting methods are
summarized in section 4. Section 5 presents uncertainty study results and section 6 gives our
conclusions.

2. MC samples and training variables

Monte Carlo samples used in this study are from the ATLAS Computing System Commissioning
(CSC) [11] with full detector simulation and reconstruction. For this study we used a few loose cuts
to pre-select events with the approximate experimental signature of the signal, then the pre-selected
events are analyzed using the ANN and BDT multivariate programs to further separate signal from
background events. In table 1 we list the MC and pre-selection information for the signal (WZ) and
background MC events used in this study. This information includes the total production cross-
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sections (σMC) [12], the triple-lepton decay branching ratio (Br), the total number of simulated MC
events (NMC), the number of pre-selected events (Nprecut), and the number of expected events (Nexp)
normalized to 1 fb−1 integrated luminosity (

∫

Ldt) after the pre-selection. The initial event weight
for each process is listed in table 1 as well. The cross-section correction factor,K, in the table 1 is
defined as the ratio of the next-to-leading order (NLO) cross-section to the cross-section obtained
from the MC generators. Thus, if we used a NLO MC generator, the K value is 1. Otherwise, if
a LO MC generator is used, the K value isσ(NLO)/σ(LO) (σ denotes the cross-section). The
expected number of events for 1 fb−1, Nexp, and the event’sweight listed in table 1 are calculated
based on

Nexp =
σMC×K×Br× (

∫

Ldt)×Nprecut

NMC

and

Weight=
σMC×K×Br× (

∫

Ldt)
NMC

.

The integrated luminosity (
∫

Ldt) is a constant (1 fb−1) for all the MC process, so the event weight
of a given MC process depends on its production cross-section, decay branching ratio and the total
number of MC events generated (NMC). For a given MC process, a larger event weight means lower
statistics for analysis. In general, higher MC statistics are desired to reduce statistical uncertainty
for data analysis. Evidently, the event weights vary dramatically among the various MC processes
as shown in table 1.

The pre-selection applied loose cuts to all datasets by requiring two leptons with invariant
mass consistent with theZ mass and an additional lepton with missing transverse energy forming
a transverse mass consistent with the W boson mass. The pre-selection also requires that at least
one lepton have transverse momentum greater than 20 GeV to satisfy the trigger requirements of
the experiment.

The physics variables input into the ANN and BDT trainings are selected based on our ex-
perience with cut-based analysis (optimized to separate signal from background), and the variable
’Gini’ index determined from the decision trees [2]. This index indicates the separation power be-
tween signal and background of a variable. We give brief descriptions of these variables, separated
into four categories.

• Energy and Momentum
The characteristics of energy and momentum are different from the WZ events and the back-
ground events. For example,tt̄ events will have larger hadronic jet energies compared to the
WZevents, theZ+X background will have lower missing transverse energy and soon. The
energy and momentum variables we used are

– Pℓ
T - lepton transverse momentum, three variables (two leptonsdecay from Z, one lepton

decays from W),

– MET - missing transverse energy,

– MET significance which is defined asMET/
√

∑i ET(i), (i is the index counting leptons
and jets),

– Eh
T - vector sum of transverse momentum from leptons andMET,
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MC Process σMC(fb) K Br NMC Nprecut Nexp/ f b−1 Weight
pp→W+Z → ℓ+νℓ+ℓ− 0.3673E+05 1.0 0.0144 26550 6848 136.4 0.0199
pp→W−Z → ℓ−ν̄ℓ+ℓ− 0.2099E+05 1.0 0.0144 17450 5118 88.7 0.0173
pp→ Z/γ → ℓ+ℓ− 0.8910E+06 1.5 0.0672 999742 111 10.0 0.0898
pp→ Z(e+e−)+ jet(E jet = 10−20 GeV) 0.1360E+08 1.3 0.0336 597281 0 0.0 0.9946
pp→ Z(e+e−)+ jet(E jet = 20−40 GeV) 0.8670E+07 1.3 0.0336 398697 0 0.0 0.9499
pp→ Z(e+e−)+ jet(E jet = 40−80 GeV) 0.4120E+07 1.3 0.0336 397524 0 0.0 0.4527
pp→ Z(e+e−)+ jet(E jet = 80−120GeV) 0.8270E+06 1.3 0.0336 397009 0 0.0 0.0910
pp→ Z(e+e−)+ jet(E jet > 120GeV) 0.3830E+06 1.3 0.0336 198652 0 0.0 0.0842
pp→ Z(τ +τ−)+ jet(E jet = 10−20 GeV) 0.1360E+08 1.3 0.0336 598783 0 0.0 0.9921
pp→ Z(τ +τ−)+ jet(E jet = 20−40 GeV) 0.8670E+07 1.3 0.0336 399076 0 0.0 0.9490
pp→ Z(τ +τ−)+ jet(E jet = 40−80 GeV) 0.4120E+07 1.3 0.0336 398972 0 0.0 0.4511
pp→ Z(τ +τ−)+ jet(E jet = 80−120GeV) 0.8270E+06 1.3 0.0336 396671 0 0.0 0.0911
pp→ Z(τ +τ−)+ jet(E jet > 120GeV) 0.3830E+06 1.3 0.0336 199046 0 0.0 0.0840
pp→ Z(µ+µ−)+ jet(E jet = 10−20 GeV) 0.1360E+08 1.3 0.0336 2996413 492 97.5 0.1983
pp→ Z(µ+µ−)+ jet(E jet = 20−40 GeV) 0.8670E+07 1.3 0.0336 1995792 789 149.7 0.1898
pp→ Z(µ+µ−)+ jet(E jet = 40−80 GeV) 0.4120E+07 1.3 0.0336 1189793 1516 229.3 0.1513
pp→ Z(µ+µ−)+ jet(E jet = 80−120GeV) 0.8270E+06 1.3 0.0336 397856 1105 100.3 0.0908
pp→ Z(µ+µ−)+ jet(E jet > 120GeV) 0.3830E+06 1.3 0.0336 199832 1133 94.9 0.0837
pp→ Z(ℓ+ℓ−)(Mz= 30−81 GeV) 0.4220E+07 1.3 0.1010 1000000 16 8.9 0.5541
pp→ Z(ℓ+ℓ−)(Mz= 81−100GeV) 0.4610E+08 1.3 0.1010 3284999 406 748.1 1.8426
pp→ Z(ℓ+ℓ−)(Mz> 100GeV) 0.1750E+07 1.3 0.1010 971000 271 64.1 0.2366
pp→ Zµµ (Minv > 150GeV) 0.1750E+07 0.8 0.0336 43000 33 36.1 1.0940
pp→ ZµµJet 0.8270E+06 0.8 0.0336 35000 20 12.7 0.6351
pp→ Zee(Pt > 100GeV) 0.8270E+06 0.8 0.0336 46000 11 5.3 0.4833
pp→ Zµµ (Pt > 100GeV) 0.8270E+06 0.8 0.0336 33000 42 28.3 0.6736
pp→ Zττ (Pt > 100GeV) 0.8270E+06 0.8 0.0003 32000 41 0.3 0.0069
pp→ tt̄ 0.7590E+06 1.0 0.5550 604750 1071 746.0 0.6966
pp→ Zγ (Pt > 25 GeV) 0.4510E+05 1.0 0.0672 46800 43 2.8 0.0648
pp→W+W− → e+νe−ν̄ 0.1133E+06 1.0 0.0120 41950 9 0.3 0.0324
pp→W+W− → e+νµ−ν̄ 0.1133E+06 1.0 0.0120 45900 22 0.7 0.0296
pp→W+W− → e+ντ−ν̄ 0.1133E+06 1.0 0.0120 71000 7 0.1 0.0191
pp→W+W− → µ+νe−ν̄ 0.1133E+06 1.0 0.0120 47000 18 0.5 0.0289
pp→W+W− → µ+νµ−ν̄ 0.1133E+06 1.0 0.0120 48950 30 0.8 0.0278
pp→W+W− → µ+ντ−ν̄ 0.1133E+06 1.0 0.0120 44000 8 0.2 0.0309
pp→W+W− → τ +νe−ν̄ 0.1133E+06 1.0 0.0120 47700 2 0.1 0.0285
pp→W+W− → τ +νµ−ν̄ 0.1133E+06 1.0 0.0120 45800 8 0.2 0.0297
pp→W+W− → τ +ντ−ν̄ 0.1133E+06 1.0 0.0120 34850 0 0.0 0.0390
pp→ ZZ→ ℓ+ℓ−ℓ+ℓ− 0.1886E+05 1.0 0.0045 35700 8597 20.4 0.0024

Table 1. Breakdown of MC samples used for ZW analysis.

– Ht - scalar sum of transverse momentum from jets, leptons andMET,

– ∑Ejet
T - sum of transverse energy from each jet,

– PT(WZ) - transverse momentum ofWZbosons,

– Erecoil
T - total recoil transverse energy.

• Lepton isolations
The leptons from theW andZ decays are isolated, but leptons from the QCD jets are not
isolated. Typically, the QCD jets have multiple tracks and larger energy deposition around
the leptons. The isolation variables we used are

– Niso
trk - number of charged tracks in∆R< 0.4 cone around a lepton (∆R=

√

(∆φ)2 +(∆η )2),
three variables (two leptons decay from Z, one lepton decaysfrom W),
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– ∑Piso
T - sum of trackPT in a∆R< 0.4 cone around a lepton,

– ∑Eiso
T - sum of jet transverse energy in∆R< 0.4 cone around a lepton,

– f iso
ℓ - fraction of energy = [E(∆R< 0.4)-E(∆R< 0.2 )] / Eℓ

T .

• Event topologies
The following variables are selected to suppress top and QCDjet events and to separate fake
lepton events from theWZsignal:

– ∆R(ℓ,ℓ′) - separation between two leptons, 2 variables (one lepton decays from W, the
other lepton decays from Z),

– ∆A - vertex difference between leptons in transverse plane (impact parameter), 2 vari-
ables (one lepton decays from W, the other lepton decays fromZ).

• Mass information
The mass information is used to reduce QCD andtt̄ background events with leptons (or fake
leptons) that do not decay fromZ andW. Two variables are used in our analysis:

– Mℓℓ - invariant mass of two leptons fromZ decays,

– MT(ℓ,MET) - transverse mass of a lepton andMET (neutrino) fromW decays.

For variable distribution shape comparisons, we show some energy and momentum variable
distributions for signal and background in figure 1 and some variable distributions related to lepton
isolation, event topology and mass in figure 2. All the eventsin the plots are passed pre-selection
cuts and each signal (black histograms) and background distribution is normalized to the same area.

Figure 3 and 4 show the same variable distributions with event weighting. In these plots,
the background histograms are stacked, with areas reflecting the relative weights. For comparison,
total background events and total signal events are normalized to the same area, respectively.

From the variable distributions (both for signal and background), we found that a single vari-
able has limited power to separate signal from background. But, when combining these variables
using ANN or BDT, the signal and background could be well separated, particularly when the
proper event reweighting algorithm is used in the multivariate analysis.

The BDT program provides a sensitive measure to indicate thesignal and background sepa-
ration effectiveness of each input variable based on the Gini index contribution [2]. We list the
Gini index contributions of the input variables in our analysis for both event reweighting and equal
weighting cases in table 2. For each variable, a larger Gini index indicates a relatively larger con-
tribution to the overall signal to background separation. From the Gini index listed in this table
we know that the lepton isolation and mass variables are especially effective at separating the WZ
signal from various background events. However, for equal weighting training, the BDT algorithm
tends to focus on separating the WZ signal from the ZZ background mainly because the ZZ events
dominate the background training sample after the pre-selection.

3. Event reweighting training technique

As we mentioned in section 2, the event weights of various MC processes are quite different. MC
samples with larger event weights represent lower statistics relative to cross-section and vice versa.
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Figure 1. Distributions of the transverse momentum of leptons (top left), the transverse momentum of
the WZ system (top right), the missing transverse energy of the event (bottom left) and the vector sum of
transverse momenta from leptons andMET (bottom right). Among the histograms, black indicates ZW
signal events, red indicatestt̄, green indicates Z plus jets, blue indicatesZZ → ℓℓℓℓ and pink indicates a
combination of all backgrounds. All histograms are normalized to the same area for comparison.

For instance, the MCpp→ZZ→ ℓℓℓℓ sample has a total of 35700 events (before the pre-selection).
A total cross section of 18860 fb (NLO) and a four-lepton decay branching ratio of 0.0045 means
that for 1 fb−1 integrated luminosity the total number of expectedZZ→ ℓℓℓℓ is about 85. Thus,
theZZ event weight is 0.0024, as listed in table 1. In contrast, theDrell-Yan sample at the Z mass
(pp→ Z(ℓ+ℓ−)(Mz= 81−100GeV)) contains 3.28 million events and yet the NLO cross-section
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Figure 2. Distributions of the number of charged tracks around a lepton in a cone of∆R= 0.4 (top left), the
two lepton separation in∆R (top right), the invariant mass of two leptons (bottom left)and the transverse
mass of leptons combined withMET (bottom right). Among the histograms, black indicates ZW signal
events, red indicatestt̄, green indicates Z plus jets, blue indicatesZZ→ ℓℓℓℓ and pink indicates a combination
of all backgrounds. All histograms are normalized to the same area for comparison.

and branching ratio indicate that 1.85 times as many events (6.05 million) are expected in 1f b−1

integrated luminosity, thus this sample has a weight of 1.85.

If we treat these MC events from different sources equally using conventional training tech-
niques, then multivariate training methods for ANNs and BDTs will focus disproportionately on
the MC events with lower event weights. This is because thoseevents have a higher probability of
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Figure 3. Distributions of the transverse momentum of leptons (top left), the transverse momentum of
the WZ system (top right), the missing transverse energy of the event (bottom left) and the vector sum of
transverse momenta from leptons andMET (bottom right). Among the histograms, black indicates ZW
signal events, red indicatestt̄, green indicates Z plus jets, blue indicatesZZ → ℓℓℓℓ and pink indicates a
combination of all backgrounds. Signal and total reweighted background events are normalized to the same
area for comparison. Major background are stacked indicating the relative contributions.

being selected for the ANN training relative to their rate ofproduction in the experiment. In the
BDT training process, a sample with larger statistics relative to cross-section will have relatively
larger total event weight. This will affect which variablesare chosen to be split in the tree and
the value at which the splitting cut occurs. For example, in our analysis undue emphasis would
be put on the variables separating theZZ background from signal. To avoid this training prejudice
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Figure 4. Distributions of the number of charged tracks around a lepton in a cone of∆R= 0.4 (top left), the
two lepton separation in∆R (top right), the invariant mass of two leptons (bottom left)and the transverse
mass of leptons combined withMET (bottom right). Among the histograms, black indicates ZW signal
events, red indicatestt̄, green indicates Z plus jets, blue indicatesZZ→ ℓℓℓℓ and pink indicates a combination
of all backgrounds. Signal and total reweighted backgroundevents are normalized to the same area for
comparison. Major background are stacked indicating the relative contributions.

we used event reweighting for the ANN and BDT training. As illustrated above, the event weights
for different physics processes are independent of pre-selection as shown in the Weight definition
expression in section 2 and table 1. As will be described in the following subsections, the sums of
all the weights of training signal or background events after pre-selection are normalized to 1.
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Training Variables Gini Index Contribution(%)
Event Reweighting Equal Weighting

PT(Z → ℓ−) 2.41 1.46
Niso

trk (tracks aroundZ → ℓ− in ∆R< 0.4 cone) 4.53 2.13
PT(Z → ℓ+) 1.93 1.34
Niso

trk (tracks aroundZ → ℓ+ in ∆R< 0.4 cone) 7.65 2.49
PT(W± → ℓ±) 4.16 3.01

∑Piso
T (tracks aroundW± → ℓ± in ∆R< 0.4 cone) 11.88 11.80

Niso
trk (tracks aroundW± → ℓ± in ∆R< 0.4 cone) 20.56 14.56

∑Eiso
T (jets aroundW± → ℓ± in ∆R< 0.4 cone) 2.07 5.83

f iso
ℓ 2.05 4.57

∆A(Z → ℓ+,W± → ℓ±) 3.26 2.73
∆R(Z → ℓ+,W± → ℓ±) 2.63 2.49
∆A(Z → ℓ−,W± → ℓ±) 4.17 3.12
∆R(Z → ℓ−,W± → ℓ±) 3.05 3.07
MET-missing transverse energy 3.90 10.26
PT(WZ) 1.59 3.88
Mℓℓ 9.70 4.22
MT(ℓ,MET) 7.55 6.67
Ht 0.91 0.94

∑Ejet
T 0.91 1.73

Eh
T 0.72 6.03

MET/
√

∑i ET(i) 0.95 4.10
Erecoil

T 3.42 3.58

Table 2. Gini index contributions of input variables for BDT training using event reweighting and equal
weighting techniques.Z → ℓ means lepton decays from Z andW → ℓ means lepton decays from W.

3.1 BDT reweighting

In the BDT training process we start withNs pre-selected signal andNbg pre-selected background
events. In the traditional BDT algorithm [2, 3] using equal event weighting for training, the initial
weights of signal and background events areN−1

s andN−1
bg , respectively. The total signal event

weight and the total background event weight are each normalized to 1. We implement the event
reweighting training technique for BDT by initializing theweights of all the training events to the
event weights (WTs(i), i = 1,2, . . . ,Ns for signal events;WTbg(i), i = 1,2, . . . ,Nbg for background
events) listed in table 1 , then we normalize the total signalevent weight and the total background
event weight each to 1. For signal events, the initial weightfor BDT training is

wts(i) = WTs(i)/WTOTs, i = 1,2, . . . ,Ns,

where

WTOTs =
Ns

∑
i=1

WTs(i).

For background events, the initial weight for BDT training is

wtbg( j) = WTbg( j)/WTOTbg, j = 1,2, . . . ,Nbg,
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where

WTOTbg =
Nbg

∑
j=1

WTbg( j).

In our analysis, we have used theε−boost algorithm [2] withε = 0.01. For the BDT training we
used 1000 tree iterations and 20 terminal leaves per decision tree.

3.2 ANN reweighting

For conventional ANN training both signal and background events are selected randomly with the
same probability for each training iteration. This is the equal event weighting training technique.
When we have multiple sources of background events with different production cross-sections
from the proton-proton collisions the equal event weighting training technique may not work well,
particularly when the number of background events in the training sample are not proportional
to the production cross-sections. Effectively, the background events with large cross-section are
underrepresented, and don’t receive appropriate training. So, we developed the event reweighting
algorithm to improve the training process for ANN. The basicidea of the event reweighting tech-
nique is to modify the probability of a given event to be selected for the ANN training. For all the
MC events, the reweighting (determination of the probability) should be automatically included in
the ANN program, which reflects the weights of the underlyingphysics. We briefly describe our
algorithm below.

Suppose we have three different background samples, A, B andC. These samples haveNA, NB

andNC events, respectively. Based on production cross-sectionsand the pre-selection efficiencies,
we expect the background contributions from sample A, B, andC are 50%, 30% and 20% respec-
tively. Thus, sample A events should have 50% probability tobe selected for training, sample B
and C should have 30% and 20% probabilities to be selected fortraining, respectively. So, the
probabilities of selecting a single training event in background samples A, B and C are 50%/NA,
30%/NB and 20%/NC, respectively.

The general algorithm, as implemented in the code is the following,

• start with weights of training signal and background eventslisted in table 1,
wt( j), j = 1, 2, . . . ,Ni (i = signal or background),

• calculate accumulated weights for eventj, wt_sum( j):
wt_sum( j) = wt_sum( j −1)+wt( j), j = 2, . . . ,N,

• generate a random number with uniform distribution in a range of [0,wt_sum(N)],

• select an event for the ANN training by minimizing the generated random numberRn and
the accumulated weightwt_sum(i): min|Rn−wt_sum(i)|, i = 1, . . . ,N,

• iterate the above process many times for the ANN training.

The event reweighting training technique can be applied to various ANN algorithms. For this
analysis, we used a back-propagation neural network with three layers, one input, one hidden and
one output layer. There are 22 nodes in both the input and hidden layers, and there is one output
node. The neuron response is a sigmoid function. The learning rate isη = 0.05, the momentum is
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Figure 5. Distributions of the ANN output for testing samples assuming integrated luminosity of 1 fb−1.

α = 0.07 and 1,000,000 training cycles are used for the ANN training. The general description of
the ANN can be found in section 6.8 of the TMVA User guide [1].

4. Application and results

The MC signalWZ→ ℓνℓℓ and all the background pre-selected events are split into two nearly
equal samples. Odd and even numbered events in each MC process are grouped into sample A and
B, respectively. Sample A and B are statistically independent. We use sample A for training and
then use sample B for testing.

The training sample had 5983 signal and 7907 background events. The testing sample had
5983 signal and 7894 background events. We performed the ANNand the BDT analysis by using
equal weight and reweighting techniques. We show both results in figure 5 and figure 6. The
results shown in these plots are for the testing sample. Figure 5 shows the ANN analysis results
and figure 6 shows the BDT results. In both figures, the top plots show the analysis with the event
reweighting technique and the bottom plots show results with the equal weight technique. In those
plots, the solid histograms are for the signal and the dottedhistograms are for the backgrounds.
Both signal and backgrounds are normalized to 1 fb−1 integrated luminosity.
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Figure 6. Distributions of the BDT output for testing samples assuming integrated luminosity of 1 fb−1.

As we expected, the signal events are mainly distributed in an area close to 1 in the ANN
output spectrum, and the background events are distributedclose to 0 (see figure 5). The top plot of
figure 5, the ANN output spectrum produced with the reweighting algorithm, shows that the signal
distribution is much sharper around an ANN output of 1. However, with equal weight training,
the signal distribution near 1 is smeared out. As a result, the signal selection efficiency decreases
significantly when using conventional technique of training with equal weights.

Similarly, we observed in figure 6 that the BDT output with event reweighting training has
much better signal to background separation power (top plot) compared to that with equal weight-
ing event training (bottom plot).

By choosing the selection cuts on the ANN or the BDT output spectra, we can determine the
number of selected signal and background events as well as the experimental signal to background
ratio. Our comparison of the analysis performance using different training techniques focuses on
the relative difference between signal and background, thus we look at the number of selected
signal events versus background events as the selection cutvaries.

Comparisons of reweighting and equal weighting techniqueswith the ANN and BDT anal-
yses are shown in figure 7, where we plot the expected number ofbackground events versus the
number of signal events corresponding to an integrated luminosity of 1 fb−1 by varying the ANN
and the BDT output selection cuts. The black solid curve represents results from the BDT with
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Figure 7. Number of background events versus number of signal events for testing samples assuming
integrated luminosity of 1 fb−1.

event reweighting for training; the red dashed curve shows results from the BDT with equal event
weighting; the green dotted curve indicates results from the ANN with event reweighting; and, the
blue dash-dotted curve shows results from the ANN with equalevent weighting for training. From
these curves we see that, for the same number of signal eventsselected using ANN or BDT, using
the event reweighting technique gives much lower background event contamination compared to
equal event weighting.

The numerical comparisons are shown in table 3. We vary the selection cuts on the ANN and
BDT output spectra to keep the same number of signal events and then compare the background
contamination and the ratio of background contamination determined from reweighting and equal
event weighting techniques. Our analysis shows that, compared with the equal weighting training,
the ANN and BDT trained with event reweighting reduce the background by factors of about 5∼ 7
and 6∼ 10, respectively.

5. Uncertainty studies

The reweighting technique will rely on our knowledge of the event production rates (cross-sections)
in the colliders. Thus, it is important to understand the multivariate training stability with respect
to the production cross-section uncertainties of the MC processes. We looked at BDT training
to estimate these effects. We introduced 20% uncertaintiesto the event weights for our training
samples, while for the testing sample we have kept the ’correct’ event weights. Compared with
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Nsignal 60 80 100 120 140 160

Nbg1 for ANN-equal-weighting 30.5 51.9 72.4 104.7 133.3 177.6

Nbg2 for ANN-event-reweighting 5.8 7.7 9.8 14.7 25.9 34.9

Ratio= Nbg1/Nbg2 for ANN 5.3 6.7 7.4 7.1 5.1 5.1

Nbg3 for BDT-equal-weighting 18.5 39.4 60.7 69.1 88.9 110.1

Nbg4 for BDT-event-reweighting 3.1 4.0 6.3 8.4 13.2 19.3

Ratio= Nbg3/Nbg4 for BDT 6.0 9.9 9.6 8.2 6.7 5.7

Table 3. Number of background events (Nbg) versus number of signal events (Nsignal) using the ANN and
BDT discriminating algorithms with equal weighting and event reweighting training techniques.
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Figure 8. Background efficiencies versus number of training events for various signal efficiencies. Training
events are selected randomly but the testing sample is fixed for the comparison. The BDT training-testing
process is repeated 50 times to obtain average background efficiencies and RMS for a set of fixed signal
efficiencies.

the original BDT performance without cross-section uncertainties, the relative changes of the BDT
performance with 20% cross-section uncertainties are lessthan about 6%, e.g. while keeping the
same number of signal events, the background contaminationincreased by 4-7% depending on
cuts. This uncertainty is well within the 15-25% relative Root-Mean-Squared (RMS) errors of
background efficiencies which will be described below.
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Generally, a large training sample is desired for training in multivariate algorithms. It is impor-
tant to understand what is a sufficient number of training events such that the background efficiency
is insensitive to training sample size. To this end, we studied the background efficiencies and RMS
errors as a function of the number of training events for a setof fixed signal efficiencies as shown in
figure 8. The training events are selected randomly with replacement from the training sample with
5983 signal and 7907 background events for the BDT training,and a statistically independent MC
sample with 5983 signal and 7894 background events is used for testing. For each training point,
the BDT training-testing process is repeated 50 times with adifferent set of training samples and
a fixed testing sample to obtain the average background efficiencies and RMS errors for a given
set of signal efficiencies. Figure 8 indicates that fewer MC events for training will result in larger
background contaminations, presumably because the numberof MC events is insufficient to fully
train the BDTs. We also note that with at least 10000 trainingevents the background efficiency
becomes relatively stable. We have used about 14000 events for training, thus we expect the bias
due to training sample size should be small.

6. Conclusions

We have developed and tested an event reweighting techniqueto be used when training multivari-
ate pattern recognition processes. This technique is necessary to train the pattern recognition in an
unbiased way, particularly for multi-background processes with limited MC statistics. For the AT-
LAS WZ→ ℓνℓℓ analysis, with large background contributions from different physics processes,
we found that for good performance using the ANN and the BDT analysis one should employ event
reweighting in the training process.
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