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Abstract

In this paper, we compare the performance, stability and robustness of Artificial Neural Networks (ANN) and Boosted Decision

Trees (BDT) using MiniBooNE Monte Carlo samples. These methods attempt to classify events given a number of identi-

fication variables. The BDT algorithm has been discussed by us in previous publications. Testing is done in this paper by smearing

and shifting the input variables of testing samples. Based on these studies, BDT has better particle identification performance

than ANN. The degradation of the classifications obtained by shifting or smearing variables of testing results is smaller for BDT than

for ANN.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The boosting algorithm is one of the most powerful
learning techniques introduced during the past decade. The
motivation for the boosting algorithm is to design a
procedure that combines many ‘‘weak’’ classifiers (such as
decision trees, random forests, ANNs, etc.) to achieve a
powerful classifier. One starts with unweighted training
events and builds a decision tree [1]. If a training event is
misclassified, then the weight of that event is increased
(boosted). A second tree is built using exactly the same set
of training events but with new weights. Again misclassified
events have their weights boosted and the procedure is
repeated several hundred to thousand times until the
performance becomes optimal. Each test event is followed
e front matter r 2007 Elsevier B.V. All rights reserved.
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through each tree in turn. If it lands on a signal leaf it is
given a score of 1, otherwise �1. The sum of the scores
from all trees, is the final score of the event. A high score
means that the event is most likely signal and a low score
that it is most likely background. The major advantages of
Boosted Decision Trees (BDT) are their stability, their
ability to handle large numbers of input variables, and their
use of boosted weights for misclassified events to give these
events a better chance to be correctly classified in
succeeding trees.
The Artificial Neural Network (ANN) technique has

been widely used in data analysis of High Energy Physics
(HEP) experiments in the last decade. The use of the ANN
technique usually gives better results than the traditional
simple-cut techniques. Based on our previous studies, BDT
with the Adaboost [2–4] or �-Boost [5,6] algorithms
perform better than ANN and some other boosting
algorithms for MiniBooNE particle identification (PID)
[1,7]. More and more major HEP experiments (ATLAS,
BaBar, CDF, D0, etc.) [8–14] have begun to use boosting
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algorithms as an important tool for data analysis since
our first successful application of BDT for MiniBooNE
PID [1,7].

In this paper we discuss the Boosting method in the context
of MiniBooNE. For practical applications of data mining
algorithms, performance, stability and robustness are deter-
minants. We focus on stability and robustness of ANN and
BDT with �-Boost ð� ¼ 0:01Þ by smearing or shifting values
of input variables randomly for testing samples. The results
obtained in this paper do not represent optimal MiniBooNE
PID performance because we only use 30 arbitrarily selected
variables for ANN and BDT training and testing. BDT with
more input variables results in significantly better perfor-
mance. However, ANN will not improve significantly by
using more input variables [1,7]. MiniBooNE is a crucial
experiment operated at Fermi National Accelerator Labora-
tory which is designed to confirm or refute the evidence for
nm! ne oscillations at Dm2 ’ 1 eV2 seen by the LSND
experiment [15,16]. It will imply new physics beyond the
Standard Model of particle physics if the LSND signal is
confirmed by the MiniBooNE experiment.

2. Training and testing samples

The training sample has 50 000 signal and 100000
background events. An independent testing sample has
54200 signal and 146600 background events. Fully oscillated
ne charged current quasi-elastic (CCQE) events are signal; all
nm and non-CCQE intrinsic ne events are treated as
background. The signature of each event is given by 322
variables [17,18]. Thirty out of 322 variables were selected
randomly for this study. (The selection was by variable name
not by the power of the variables.) All selected variables are
used for ANN and BDT training and testing.

The detailed description of reconstructed variables is
available in MiniBooNE technical notes [17,18]. Here we
briefly mention some of variables used for this study. The
MiniBooNE neutrino detector is filled with 800 tons of
pure mineral oil, which is contained in a spherical tank of
610-cm inner radius. The detector is divided into two
optical isolated regions. The inner region employs 1280 8-
in. photomultiplier tubes (PMTs) to measure the charge,
time and position of particles produced by neutrino
interactions on nuclei. The outer veto region is instrumen-
ted with 240 PMTs to tag particles entering or leaving the
detector. The final state charged particles passing through
the oil can emit both prompt Cherenkov and delayed
isotropic scintillation photons, which are detected in a ratio
of about 3:1 for b�1 particles. Some reconstructed
variables are listed in the following:
�
 fraction of very prompt PMT hits, �2 nsoDTo3 ns,

�
 fraction of very late PMT hits, DT415 ns,

�
 reconstructed track length,

�
 angle between track direction and neutrino beam
direction,

�
 ratio of scintillation flux to Cherenkov flux,
�
 time likelihood in the Cherenkov ring region
0:55o cos yo0:85,

�
 time likelihood in 0:4o cos yo0:5,

�
 time likelihood in 0:2o cos yo0:4,

�
 time likelihood in �0:2o cos yo0:2,

�
 time likelihood in cos yo� 0:2,

�
 charge likelihood in various cos y regions,

�
 reconstructed p0 mass,

�
 angle between two g’s from p0 decay,

�
 distance from the first g conversion point to the tank
wall,

�
 the difference of time likelihoods between electron and
p0,

�
 the difference of charge likelihoods between electron
and p0,

�
 ratio of measured to predicted charge in cos yo� 0:8,

�
 ratio of measured to predicted charge in 0:5o
cos yo0:7,

�
 for the two g hypothesis, the fraction of Cherenkov flux
in the lower energy g.

The time (charge) likelihood is the likelihood of the time
(charge) distribution of the PMT hits under the given
hypothesis.

2.1. Training samples

We prepared 10 statistically independent training sam-
ples. Each sample has 5000 signal and 10 000 background
events selected sequentially from the large training sample.
Both ANN and BDT are trained separately on each of
these training samples. For a given testing sample, then,
ANN and BDT each have 10 sets of results. The mean
values and variance of the 10 sets of results are calculated
to compare the ANN and BDT methods.

2.2. Testing samples set 1—smearing randomly

In order to study the stability of ANN and BDT on the
testing samples, we randomly smear the input variables by
1%, 3%, 5%, 8% and 10%, respectively. The smearing
formula is written as

V
j
i ¼ V

j
i � ð1þ sf � R

j
iÞ

where V
j
i represents value of jth variable in ith testing

event, sf is the smearing factor ð¼ 0; 0:01; 0:03; 0:05;
0:08; 0:1Þ. R

j
i is a random number with a Gaussian distri-

bution; it is different for each variable and each event.

2.3. Testing samples set 2—shifting randomly

The random shift formula can be written as

V
j
i ¼ V

j
i � ð1þ sf � R

j
iÞ

where V
j
i represents value of jth variable in ith testing

event, sf is the shifting factor ð¼ 0; 0:01; 0:03; 0:05; 0:08; 0:1Þ
and R

j
i is a discrete random number with value 1 or �1.
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Table 1

Signal and background efficiencies for ANN and BDT with RMS errors

for background efficiencies

Eff_signal (%) Eff_bkgd_

ANN (%)

Eff_bkgd_

BDT (%)

Ratio ¼ Eff_bkgd_

ANN/Eff_bkgd_BDT

�sRMS �sRMS

30 0:416� 0:045 0:238� 0:009 1:748� 0:201
35 0:512� 0:051 0:310� 0:008 1:655� 0:172
40 0:623� 0:057 0:389� 0:014 1:599� 0:157
45 0:748� 0:063 0:481� 0:017 1:557� 0:142
50 0:885� 0:070 0:594� 0:027 1:489� 0:136
55 1:041� 0:076 0:722� 0:024 1:441� 0:116
60 1:227� 0:085 0:882� 0:023 1:391� 0:102
65 1:449� 0:088 1:074� 0:023 1:350� 0:088
70 1:732� 0:094 1:315� 0:026 1:317� 0:076
75 2:095� 0:102 1:643� 0:036 1:276� 0:068
80 2:585� 0:111 2:110� 0:049 1:225� 0:060
85 3:316� 0:124 2:842� 0:079 1:167� 0:054
90 4:618� 0:129 4:143� 0:113 1:115� 0:044

The ratio is defined as the background efficiency from ANN divided by

that from BDT using the original testing sample (no smearing and

shifting) and the same signal efficiency.
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2.4. Testing samples set 3—shifting positively

The values of all training variables are shifted positively.
The formula is,

V
j
i ¼ V

j
i � ð1þ sfÞ

where V
j
i represents value of jth variable in ith testing

event, sf is the shifting factor ð¼ 0; 0:01; 0:03; 0:05;
0:08; 0:1Þ.

2.5. Testing samples set 4—shifting negatively

The values of all training variables are shifted negatively.
The formula is,

V
j
i ¼ V

j
i � ð1� sfÞ

where V
j
i represents value of jth variable in ith testing

event, sf is the shifting factor ð¼ 0; 0:01; 0:03; 0:05;
0:08; 0:1Þ.

2.6. Testing samples set 5—shifting mix

Each variable is shifted in one direction for all testing
events. The shift direction for each variable is determined
by a random number with the discrete values of 1 or �1.
The formula is written as

V
j
i ¼ V

j
i � ð1þ sf � RjÞ

where V
j
i represents value of jth variable in ith testing

event, sf is the shifting factor ð¼ 0; 0:01; 0:03; 0:05;
0:08; 0:1Þ.
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3. Results

All ANN and BDT results shown in this paper are from
testing samples.
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Fig. 1. Background efficiency versus signal efficiency. The top plot shows

results from ANN with smeared testing samples set 1. The bottom plot

shows results from BDT. Dots are for the testing sample without

smearing; boxes, triangles, stars, circles and crosses are for 1%, 3%, 5%,

8% and 10% smearing, respectively.
3.1. Results from original testing samples

Table 1 lists the signal and background efficiencies for
ANN and BDT with root mean square (RMS) errors and
statistical errors for background efficiencies. The efficiency
ratio is defined as background efficiency from ANN
divided by that from BDT using the original testing sample
(no smearing and shifting) and the same signal efficiency.
Efficiency ratio values greater than 1 mean that BDT
works better than ANN by suppressing more background
events (less background efficiency) for a given signal
efficiency. From Table 1, the efficiency ratios vary from
about 1.12 to 1.75 for signal efficiencies ranging from 90%
to 30%. Lower signal efficiencies yield higher ratio values.
The statistical error of the test background efficiency for
ANN is slightly higher than that for BDT depending on the
signal efficiency. The variance of 10 test background
efficiencies for ANN trained with 10 randomly selected
training samples is about 2–5 times larger than that for
BDT. This result indicates that BDT training performance
is more stable than ANN training.
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3.2. Results from smeared testing samples

The background efficiency versus signal efficiency for the
smeared testing sample set 1 is shown in Fig. 1. The top
plot shows results from ANN, the bottom plot shows
results from BDT. Dots are for the results from the testing
sample without smearing, boxes, triangles, stars, circles and
crosses are for results from testing samples with 1%, 3%,
5%, 8% and 10% smearing, respectively. Both ANN and
BDT are quite stable for testing samples which are
randomly smeared within 5%, typically within about
5%–12% performance decrease for BDT and 7%–16%
decrease for ANN as shown in Fig. 1. For the 10%
smeared testing sample, however, the performance of ANN
is degraded by 37% to 62%; higher signal efficiency results
have larger degradation. The corresponding performance
of BDT is degraded by 19% to 57%.

The variance (RMS) of background efficiencies based on
trials versus signal efficiency for the 10 different smeared
testing samples is shown in Fig. 2. The variance of
background efficiencies from BDT is about 2–5 times
smaller than that from ANN as presented in the bottom
plot of Fig. 3. The variance ratios between ANN and BDT
remain reasonably stable for various testing samples with
different smearing factors.

Fig. 3 shows the ratio of background efficiency from
ANN and BDT versus signal efficiency (top plot) and the
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Fig. 2. Variance of background efficiencies versus signal efficiency. The

top plot shows results from ANN with smeared testing samples set 1. The

bottom plot shows results from BDT. Dots are for the testing sample

without smearing; boxes, triangles, stars, circles and crosses are for 1%,

3%, 5%, 8% and 10% smearing, respectively.
ratio of RMS of background efficiency from ANN and
BDT versus signal efficiency (bottom plot). Dots are
for results from the testing sample without smearing;
boxes, triangles, stars, circles and crosses are for results
from 1%, 3%, 5%, 8% and 10% smearing, respec-
tively. Error bars in the top plot are for RMS errors
of ratios which are calculated by propagating errors from
the RMS errors from ANN and BDT results. The
performance of BDT ranges from 12% to 75% better than
that of ANN, depending on the signal efficiency as shown
in the top plot of Fig. 3. The ratio of background effi-
ciency from ANN and BDT increases with an increase in
the smearing factor. For the testing sample with 10%
random smearing, the efficiency ratio increases about 15%.
This result indicates that the BDT is more stable than
ANN for this set of specific testing samples with random
smearing.
Fig. 4 shows the background efficiency versus smearing

factor for three given signal efficiencies 30% (dots) , 50%
(boxes) and 70% (triangles). The top plot of Fig. 4 shows
results from ANN. The bottom plot of Fig. 4 shows results
from BDT. The performance of ANN and BDT degrade
modestly with relatively small smearing factors 4�0:03.
Larger smearing factors result in significant performance
degradation of ANN and BDT.
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Fig. 3. Ratio of background efficiency from ANN divided by that from

BDT versus signal efficiency (top plot) and ratio of variance from ANN

divided by that from BDT versus signal efficiency (bottom plot) with

smeared testing samples set 1. Dots are for the testing sample without

smearing; boxes, triangles, stars, circles and crosses are for 1%, 3%, 5%,

8% and 10% smearing, respectively.
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Fig. 4. Background efficiency versus smearing factor. The top plot shows

results from ANN with smeared testing samples set 1. The bottom plot

shows results from BDT. Dots, boxes and triangles are for 30%, 50% and

70% signal efficiency, respectively.
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Fig. 5. Ratio of background efficiency from ANN divided by that from

BDT versus signal efficiency (top plot) and ratio of variance from ANN

divided by that from BDT versus signal efficiency (bottom plot) with

testing samples set 2. Dots are for the testing sample without shifting;

boxes, triangles, stars, circles and crosses are for 1%, 3%, 5%, 8% and

10% shifting, respectively.
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Fig. 6. Background efficiency versus shifting factor. The top plot shows

results from ANN with testing samples set 2. The bottom plot shows

results from BDT. Dots, boxes and triangles are for 30%, 50% and 70%

signal efficiency, respectively.
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3.3. Results from shifted testing samples

Fig. 5 shows the ratio of background efficiency from
ANN and BDT versus signal efficiency (top plot) and the
ratio of variance of background efficiency from ANN and
BDT versus signal efficiency (bottom plot) for the testing
samples of set 2 with random shifting. Fig. 6 shows the
background efficiency versus smearing factor, for ANN
(top plot) and BDT (bottom plot). Results from the
randomly shifted testing samples of set 2 are comparable to
those from the randomly smeared testing samples of set 1.
In order to estimate the dependence of ANN and BDT
performance on the factor of random shifting, we vary the
shifting factor from 0 to 0.5, as shown in Fig. 7. Both ANN
and BDT performance degrade significantly by randomly
shifting the input variables with large shifting factor
ð40:1Þ.

Fig. 8 shows the ratio of background efficiency from
ANN and BDT versus signal efficiency (top plot) and the
ratio of variance of background efficiency from ANN and
BDT versus signal efficiency (bottom plot) for the testing
samples of set 3 with overall positive shifting. Fig. 9 shows
the background efficiency versus smearing factor, for ANN
(top plot) and BDT (bottom plot). The results are
reasonably stable for both ANN and BDT versus shifting
factor.
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Fig. 7. Background efficiency versus shifting factor. The top plot shows

results from ANN with testing samples set 2. The bottom plot shows

results from BDT. Dots, boxes and triangles are for 30%, 50% and 70%

signal efficiency, respectively.
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Fig. 9. Background efficiency versus shifting factor. The top plot shows

results from ANN with testing samples set 3. The bottom plot shows

results from BDT. Dots, boxes and triangles are for 30%, 50% and 70%

signal efficiency, respectively.
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BDT versus signal efficiency (top plot) and ratio of variance from ANN
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10% shifting, respectively.
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Fig. 11. Background efficiency versus shifting factor. The top plot shows

results from ANN with testing samples set 4. The bottom plot shows

results from BDT. Dots, boxes and triangles are for 30%, 50% and 70%

signal efficiency, respectively.
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BDT versus signal efficiency (top plot) and ratio of variance from ANN

divided by that from BDT versus signal efficiency (bottom plot) with

testing samples set 5. Dots are for the testing sample without shifting;

boxes, triangles, stars, circles and crosses are for 1%, 3%, 5%, 8% and

10% shifting, respectively.
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Fig. 10 shows the ratio of background efficiency from
ANN and BDT versus signal efficiency (top plot) and the
ratio of variance of background efficiency from ANN and
BDT versus signal efficiency (bottom plot) for the testing
samples of set 4 with overall negative shifting. Fig. 11
shows the background efficiency versus smearing factor,
for ANN (top plot) and BDT (bottom plot). The results are
remain reasonably stable for both ANN and BDT versus
shifting factor.

Fig. 12 shows the ratio of background efficiency from
ANN and BDT versus signal efficiency (top plot) and
the ratio of variance of background efficiency from ANN
and BDT versus signal efficiency (bottom plot) for the
testing samples of set 5 with random positive or nega-
tive shifting. Fig. 13 shows the background efficiency
versus smearing factor, for ANN (top plot) and BDT
(bottom plot).

3.4. Further validation

In order to make a cross check, a new set of 30 out of the
322 particle identification variables were selected and the
whole analysis was redone. Most results are quite similar to
the results obtained in Sections 3.1–3.3. BDT, again, was
more stable than ANN. However, the second set of 30
variables overall was less powerful by a factor of about 2
than the first set. Because of this, the variances were
dominated more by the random variations than the
variations due to a change in power with smearing or
shifting. The variances of the second set were only about
half the variances of the first set, but exhibited much more
random behavior.
4. Conclusions

The performance, stability and robustness of ANN and
BDT were compared for particle identification using the
MiniBooNEMonte Carlo samples. BDT has better particle
identification performance than ANN, even using only 30
PID variables. The BDT performance relative to that of
ANN depends on the signal efficiency. The variance in
background efficiencies of testing results due to various
BDT trainings is smaller than those from ANN trainings
regardless of testing samples with or without smearing and
shifting. The performance of both BDT and ANN are
degraded by smearing and shifting the input variables of
the testing samples. ANN degrades more than BDT
depending on the signal efficiency based on MiniBooNE
Monte Carlo samples.



ARTICLE IN PRESS

0

1

2

3

0 0.02 0.04 0.06 0.08 0.1 0.12

Shifting Factor

B
ac

kg
ro

un
d 

E
ff

ic
ie

nc
y 

- 
A

N
N

 (
%

)

Shifting Mix

0

1

2

3

0 0.02 0.04 0.06 0.08 0.1 0.12

Shifting Factor

B
ac

kg
ro

un
d 

E
ff

ic
ie

nc
y 

- 
B

D
T

 (
%

)

Shifting Mix
Effs=30% Effs=50% Effs=70%

Effs=30% Effs=50% Effs=70%

Fig. 13. Background efficiency versus shifting factor. The top plot shows

results from ANN with testing samples set 5. The bottom plot shows

results from BDT. Dots, boxes and triangles are for 30%, 50% and 70%

signal efficiency, respectively.

H.-J. Yang et al. / Nuclear Instruments and Methods in Physics Research A 574 (2007) 342–349 349
Acknowledgments

We wish to express our gratitude to the MiniBooNE
collaboration for the excellent work on the Monte Carlo
simulation and the software package for physics analysis.
This work is supported by the Department of Energy and
by the National Science Foundation of the United States.
References

[1] B.P. Roe, H.J. Yang, J. Zhu, Y. Liu, I. Stancu, G. McGregor, Nucl.

Instr. and Meth. A 543 (2005) 577 physics/0408124.

[2] Y. Freund, R.E. Schapire, Experiments with a new boosting

algorithm, Proceedings of COLT, ACM Press, New York, 1996,

pp. 209–217.

[3] Y. Freund, R.E. Schapire, J. Jpn. Soc. Artif. Intell. 14 (5) (1999)

771–780.

[4] R.E. Schapire, The boosting approach to machine learning: an

overview, MSRI Workshop on Nonlinear Estimation and Classifica-

tion, 2002.

[5] J. Friedman, Greedy function approximation: a gradient boosting

machine, Ann. Statist. 29 (5) (2001).

[6] J. Friedman, Recent advances in predictive machine learning,

Proceedings of Phystat2003, Stanford U., September 2003.

[7] H.J. Yang, B.P. Roe, J. Zhu, Nucl. Instr. and Meth. A 555 (2005) 370

physics/0508045.

[8] J. Conrad, F. Tegenfeldt, Applying rule ensembles to the search for

super-symmetry at the large hadron collider, JHEP 0607040 (2006),

hep-ph/0605106.

[9] I. Narsky, StatPatternRecognition: A Cþþ Package for Statistical

Analysis of High Energy Physics Data, physics/0507143.

[10] I. Narsky, Optimization of Signal Significance by Bagging Decision

Trees, physics/0507157.

[11] BaBar Collaboration, Measurement of CP-violation asymmetries in

the B0 ! KþK�K0 Dalitz plot, hep-ex/0607112.

[12] M.L. Yu, M.M. Xu, L.S. Liu, An empirical study of boosted neural

network for particle classification in high energy collisions, hep-ph/

0606257.

[13] P.M. Perea, Search for t-Channel Single Top Quark Production in

ppbar Collisions at 1.96TeV, FERMILAB-THESIS-2006-15.

[14] A. Hocker, J. Stelzer, H. Voss, K. Voss, X Prudent, Toolkit for

Parallel Multivariate Data Analysis, hhttp://tmva.sourceforge.net/i,

hhttp://root.cern.ch/root/html512/TMVA__MethodBDT.htmli.

[15] E. Church, et al., BooNE Proposal, FERMILAB-P-0898 (1997).

[16] A. Aguilar, et al., Phys. Rev. D 64 (2001) 112007.

[17] Y. Liu, I. Stancu, BooNE-TN-36, 09/15/2001; BooNE-TN-50, 02/18/

2002; BooNE-TN-100, 09/19/2003; BooNE-TN-141, 08/25/2004;

BooNE-Memoxx, 08/03/2005; BooNE-TN-178, 03/01/2006.

[18] B.P. Roe, H.J. Yang, BooNE-TN-117, 03/18/2004; BooNE-TN-147,

11/18/2004; BooNE-TN-151, 01/08/2005; BooNE-Memo24, 08/10/

2005; BooNE-TN-189, 7/10/2006.

http://tmva.sourceforge.net/
http://root.cern.ch/root/html512/TMVA__MethodBDT.html

	Studies of stability and robustness for artificial neural �networks and boosted decision trees
	Introduction
	Training and testing samples
	Training samples
	Testing samples set 1--smearing randomly
	Testing samples set 2--shifting randomly
	Testing samples set 3--shifting positively
	Testing samples set 4--shifting negatively
	Testing samples set 5--shifting mix

	Results
	Results from original testing samples
	Results from smeared testing samples
	Results from shifted testing samples
	Further validation

	Conclusions
	Acknowledgments
	References


