
1

The Physics of Heavy Z ′ Gauge Bosons

Paul Langacker
School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540

Key Words Zprime, Gauge Boson

Abstract The U(1)′ symmetry associated with a possible heavy Z′ would have profound im-
plications for particle physics and cosmology. The motivations for such particles in various
extensions of the standard model, possible ranges for their masses and couplings, and classes
of anomaly-free models are discussed. Present limits from electroweak and collider experiments
are briefly surveyed, as are prospects for discovery and diagnostic study at future colliders. Im-
plications of a Z′ are discussed, including an extended Higgs sector, extended neutralino sector,
and solution to the µ problem in supersymmetry; exotic fermions needed for anomaly cancel-
lation; possible flavor changing neutral current effects; neutrino mass; possible Z′ mediation of
supersymmetry breaking; and cosmological implications for cold dark matter and electroweak
baryogenesis.
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1 Introduction

Additional U(1)′ gauge symmetries and associated Z ′ gauge bosons are one of
the best motivated extensions of the standard model (SM). It is not so much that
they solve any problems as the fact that it is more difficult to reduce the rank of
an extended gauge group containing the standard model than it is to break the
non-abelian factors. As a toy example, consider the gauge group G = SU(N),
with N − 1 diagonal generators. G can be broken by the vacuum expectation
value (VEV) of a real adjoint Higgs representation Φ, which can be represented
by a Hermitian traceless N ×N matrix

Φ =
N2−1∑
i=1

ϕiLi, (1)

where the ϕi are the real components of Φ and the Li are the fundamental (N×N)
representation matrices. When Φ acquires a VEV 〈Φ〉, SU(N) is broken to a
subgroup associated with those generators which commute with 〈Φ〉. Without
loss of generality, 〈Φ〉 can be diagonalized by an SU(N) transformation, so that
the N − 1 diagonal generators remain unbroken. In special cases some of these
may be embedded in unbroken SU(K) subgroups (when K diagonal elements are
equal), but the unbroken subgroup always contains at least U(1)N−1.

Soon after the proposal of the electroweak SU(2) × U(1)Y model there were
many suggestions for extended or alternative electroweak gauge theories, some of
which involved additional U(1)′ factors. (Some examples include (1,2,3,4,5,6,7,8,
9,10,11,12,13,14,15,16,17,18,19). More complete lists of early references can be
found in (20,21,22,23). Previous reviews include (23,24,25,26,27,28).) An espe-
cially compelling motivation came from the development of grand unified theories
larger than the original SU(5) model (29), such as those based on SO(10) or E6

(See, e.g., (20, 21, 22). For reviews, see (30, 23).). These had rank larger than 4
and could break to GSM×U(1)′ n, n ≥ 1, where GSM = SU(3)×SU(2)×U(1)Y is
the standard model gauge group. However, in the original (non-supersymmetric)
versions there was no particular reason for the additional Z ′ masses to be at
the electroweak or TeV scale where they could be directly observed. Similarly,
superstring constructions often involve large gauge symmetries which break to
GSM × U(1)′ n in the effective four-dimensional theory (31), where some of the
U(1)′ are non-anomalous. In both string theories and in supersymmetric versions
of grand unification with extra U(1)′ s below the string or GUT scale, both the
U(1)′ and the SU(2) × U(1)Y breaking scales are generally tied to the soft su-
persymmetry breaking scale (31,32,26). Therefore, if supersymmetry is observed
at the LHC there is a strong motivation that a string or GUT induced Z ′ would
also have a mass at an observable scale. (An exception to this is when the U(1)′

breaking occurs along a flat direction.)
In recent years many TeV scale extensions to the SM have been proposed in

addition to supersymmetry, often with the motivation of resolving the fine tuning
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associated with the quadratic divergence in the Higgs mass. These include various
forms of dynamical symmetry breaking (33, 34, 35) and little Higgs models (36,
37, 38, 39), which typically involve extended gauge structures, often including
new Z ′ gauge bosons at the TeV scale. Some versions of theories with large extra
dimensions (40) allow the standard model gauge bosons to propagate freely in the
extra dimensions, implying Kaluza-Klein excitations (see, e.g., (42, 43, 44, 45, 46,
47,48,49,50,51)) of the Z and other standard model gauge bosons, with effective
masses of order R−1 ∼ 2 TeV × (10−17cm/R), where R is the scale of the extra
dimension. Such excitations can also occur in Randall-Sundrum models (52) (see,
e.g., (53,54,55,56)).

Other motivations for new Z ′ bosons, e.g., associated with (approximately)
hidden sectors of nature, are detailed in Sections 3 and 5. Extensions of the SM
may also involve new TeV scale charged W bosons (see, e.g., (57)), which could
couple either to left or right handed currents, but the focus of this article will be
on Z ′ s.

The experimental discovery of a new Z ′ would be exciting, but the implications
would be much greater than just the existence of a new vector boson. Breaking
the U(1)′ symmetry would require an extended Higgs (and neutralino) sector,
with significant consequences for collider physics and cosmology (direct searches,
the µ problem, dark matter, electroweak baryogenesis). Anomaly cancellation
usually requires the existence of new exotic particles that are vectorlike with re-
spect to the standard model but chiral under U(1)′, with several possibilities for
their decay characteristics. The expanded Higgs and exotic sectors can modify or
maintain the approximate gauge coupling unification of the minimal supersym-
metric standard model (MSSM). In some constructions (especially string derived)
the U(1)′ charges are family nonuniversal, which can lead to flavor changing neu-
tral current (FCNC) effects, e.g., in rare B decays. Finally, the decays of a heavy
Z ′ may be a useful production mechanism for exotics and superpartners. The
constraints from the U(1)′ symmetry can significantly alter the theoretical pos-
sibilities for neutrino mass. Finally, U(1)′ interactions can couple to a hidden
sector, possibly playing a role in supersymmetry breaking or mediation.

Section 2 of this review discusses basic issues, such as the Z ′ interactions and
properties, U(1)′ breaking, anomalies, and ordinary and kinetic mixing between
Z and Z ′. Section 3 surveys the large range of models that have been pro-
posed, including the U(1)′-breaking scale; GUT-inspired models; sets of exotics
and charges constructed to avoid anomalies; and more exotic possibilities such
as ultra-weak coupling, low mass, hidden sector, leptophobic, intermediate scale,
sequential, family nonuniversal, and anomalous U(1)′ models. Section 4 briefly
outlines the existing constraints from precision electroweak and direct collider
searches, as well as prospects for detection and diagnostics of couplings at future
colliders. Finally, Section 5 is a survey of the theoretical, collider, and cosmolog-
ical implications of a possible Z ′.
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2 Basic Issues

2.1 Z ′ Couplings

In the standard model the neutral current interactions of the fermions are de-
scribed by the Lagrangian1

− LSM
NC = gJµ3 W3µ + g′JµYBµ = eJµemAµ + g1J

µ
1 Z

0
1µ, (2)

where g and g′ are the SU(2) and U(1)Y gauge couplings, W3µ is the (weak
eigenstate) gauge boson associated with the third (diagonal) component of SU(2),
and Bµ is the U(1)Y boson. The currents in the first form are

Jµ3 =
∑
i

f̄iγ
µ[t3iLPL + t3iRPR]fi

JµY =
∑
i

f̄iγ
µ[yiLPL + yiRPR]fi, (3)

where fi is the field of the ith fermion and PL,R ≡ (1 ∓ γ5)/2 are the left and
right chiral projections. t3iL(t3iR) is the third component of weak isospin for the
left (right) chiral component of fi. For the known fermions, t3uL = t3νL = +1

2 ,
t3dL = t3e−L

= −1
2 , and t3iR = 0. The weak hypercharges yiL,R are chosen to yield

the correct electric charges,

t3iL + yiL = t3iR + yiR = qi, (4)

where qi is the electric charge of fi in units of the positron charge e > 0.
Anticipating the spontaneous breaking of SU(2)×U(1)Y to the electromagnetic

subgroup U(1)em (Section 2.2), the mass eigenstate neutral gauge bosons in Eq. 2
are the (massless) photon field Aµ and the (massive) Z0

1µ ≡ Zµ, where

Aµ = sin θWW3µ + cos θWBµ
Zµ = cos θWW3µ − sin θWBµ, (5)

and the weak angle is θW ≡ tan−1(g′/g). The new gauge couplings are e =
g sin θW and

g2
1 ≡ g2 + g′ 2 = g2/ cos2 θW . (6)

The currents in the new basis are

Jµem =
∑
i

qif̄iγ
µfi

Jµ1 =
∑
i

f̄iγ
µ[ε1L(i)PL + ε1R(i)PR]fi, (7)

with the chiral couplings

ε1L(i) = t3iL − sin2 θW qi, ε1R(i) = t3iR − sin2 θW qi. (8)

In the extension to SU(2)× U(1)Y × U(1)′ n, n ≥ 1, LNC becomes

− LNC = eJµemAµ +
n+1∑
α=1

gαJ
µ
αZ

0
αµ, (9)

1We largely follow the formalism and conventions in (58,59).
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where g1, Z
0
1µ, and Jµ1 are respectively the gauge coupling, boson, and current of

the standard model. Similarly, gα and Z0
αµ, α = 2 · · ·n+1 are the gauge couplings

and bosons for the additional U(1)′ s. The currents in Eq. 9 are

Jµα =
∑
i

f̄iγ
µ[εαL(i)PL + εαR(i)PR]fi

=
1
2

∑
i

f̄iγ
µ[gαV (i)− gαA(i)γ5]fi. (10)

The chiral couplings εαL,R(i), which may be unequal for a chiral gauge symmetry,
are respectively the U(1)α charges of the left and right handed components of
fermion fi, and gαV,A(i) = εαL(i) ± εαR(i) are the corresponding vector and axial
couplings.

Frequently, it is more convenient to instead specify the U(1)α charges of the
left chiral components of both the fermion f and the antifermion (conjugate) f c,
denoted Qαf and Qαfc , respectively. The two sets of charges are simply related,

εαL(f) = Qαf , εαR(f) = −Qαfc . (11)

For example, in the SM one has Q1u = 1
2 −

2
3 sin2 θW and Q1uc = +2

3 sin2 θW .
The additional gauge couplings and charges, as well as the gauge boson masses

and mixings, are extremely model dependent. The gauge couplings and charges
are not independent, i.e., one can always replace gα by λαgα provided the charges
Qα are all simultaneously scaled by 1/λα. Usually, the charges are normalized
by some convenient convention.

The three and four point gauge interactions of a complex SU(2) scalar multiplet
φ can be read off from the kinetic term Lkinφ = (Dµφ)†Dµφ. The diagonal (neutral
current) part of the gauge covariant derivative of an individual field φi is

Dµφi =

(
∂µ + ieqiAµ + i

n+1∑
α=1

gαQαiZ
0
αµ

)
φi, (12)

where qi and Qαi are respectively the electric and U(1)α charges of φi. For the SM
part, ti = 0, 1

2 , 1, · · · labels the SU(2) representation, t3i is the third component
of weak isospin, the weak hypercharge is yi = qi − t3i, and Q1i = t3i − sin2 θW qi.

Thus, for the neutral component φ0 of the Higgs doublet φ =
(
φ+

φ0

)
one has

tφ0 = −t3φ0 = yφ0 = 1
2 .

2.2 Masses and Mass Mixings

We assume that electrically neutral scalar fields φi acquire VEVs, so Aµ remains
massless, while the Z0

αµ fields develop a mass term LmassZ = 1
2M

2
αβZ

0
αµZ

0µ
β , where

M2
αβ = 2gαgβ

∑
i

QαiQβi|〈φi〉|2. (13)

M2
11 ≡M2

Z0 would be the (tree-level) Z mass in the SM limit in which the other
Z0’s and their mixing can be ignored. If the only Higgs fields are SU(2) doublets
(or singlets), as in the SM or the MSSM, then

M2
Z0 =

1
2
g2

1

∑
i

|〈φi〉|2 =
1
4
g2

1ν
2 =

M2
W

cos2 θW
, (14)
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where ν2 = 2
∑

i |〈φi〉|2 ∼ (
√

2GF )−1 ∼ (246 GeV)2 is the square of the weak
scale and GF is the Fermi constant. The observed Z mass strongly constrains
either higher-dimensional Higgs VEVs or Z − Z ′ mixing (41), but in principle
they could compensate and should both be considered. Allowing a general Higgs
structure, one has

M2
Z0 =

g2
1

4
√

2GFρ0

=
M2
W

ρ0 cos2 θW
, (15)

where

ρ0 ≡
∑

i(t
2
i − t23i + ti)|〈φi〉|2∑
i 2t23i|〈φi〉|2

−−−−−−−−−−→
doublets, singlets

1. (16)

Diagonalizing the mass matrix Eq. 13 one obtains n + 1 (usually) massive
eigenstates Zαµ with mass Mα,

Zαµ =
n+1∑
β=1

UαβZ
0
βµ, (17)

where U is an orthogonal mixing matrix. It is straightforward to show that the
mass-squared eigenvalues are always nonnegative. From Eq. 9 and Eq. 17 Zαµ
couples to

∑
β gβUαβJ

µ
β .

The most studied case is n = 1. Writing Qi ≡ Q2i, the mass matrix is

M2
Z−Z′ =

(
2g2

1

∑
i t

2
3i|〈φi〉|2 2g1g2

∑
i t3iQi|〈φi〉|2

2g1g2
∑

i t3iQi|〈φi〉|2 2g2
2

∑
iQ

2
i |〈φi〉|2

)
≡
(
M2
Z0 ∆2

∆2 M2
Z′

)
.

(18)
As an example, many U(1)′ models involve an SU(2) singlet, S, and two Higgs
doublets,

φu =
(
φ0
u

φ−u

)
, φd =

(
φ+
d
φ0
d

)
, (19)

with U(1)′ charges QS,u,d. Then

M2
Z0 =

1
4
g2

1(|νu|2 + |νd|2)

∆2 =
1
2
g1g2(Qu|νu|2 −Qd|νd|2) (20)

M2
Z′ = g2

2(Q2
u|νu|2 +Q2

d|νd|2 +Q2
S |s|2),

where νu,d ≡
√

2〈φ0
u,d〉, s =

√
2〈S〉, and ν2 = (|νu|2 + |νd|2) ∼ (246 GeV)2.

The eigenvalues of a general M2
Z−Z′ are

M2
1,2 =

1
2

[
M2
Z0 +M2

Z′ ∓
√

(M2
Z0 −M2

Z′)
2 + 4∆4

]
, (21)

and U is the rotation

U =
(

cos θ sin θ
− sin θ cos θ

)
, (22)

with

θ =
1
2

arctan
(

2∆2

M2
Z0 −M2

Z′

)
. (23)
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θ is related to the masses by

tan2 θ =
M2
Z0 −M2

1

M2
2 −M2

Z0

. (24)

An important limit is MZ′ � (MZ0 , |∆|), which typically occurs because an
SU(2) singlet field (such as S in the example) has a large VEV and contributes
only to MZ′ . One then has

M2
1 ∼M2

Z0 −
∆4

M2
Z′
�M2

2 , M2
2 ∼M2

Z′ (25)

and

θ ∼ − ∆2

M2
Z′
∼ C g2

g1

M2
1

M2
2

with C = −
∑

i t3iQi|〈φi〉|2∑
i t

2
3i|〈φi〉|2

. (26)

C is model dependent, but typically |C| . O(1). From Eq. 24-26 one sees that
both |θ| and the downward shift (MZ0 −M1)/MZ0 are of order M2

1 /M
2
2 . Gener-

alizations of these results for n > 1 extra U(1)’s are given in (60).

2.3 Anomalies and Exotics

A symmetry is chiral if it acts differently on the left and right handed fermions,
and non-chiral (or vector) otherwise. Thus, a chiral U(1)′ has Qαf 6= −Qαfc for at
least one f , which is also referred to as chiral. Even for a chiral symmetry, some of
the fermions may be non-chiral. If a given fermion pair is non-chiral with respect
to all of the symmetries then an elementary mass term −Lm = mf f̄LfR + h.c.
is allowed, where mf could be arbitrarily large. Such a term is forbidden for a
chiral fermion, whose mass is only generated when the symmetry is broken. For
example, if the symmetries allow the Yukawa coupling

− LY uk = λfϕf̄LfR + h.c., (27)

where ϕ is charged under the symmetry, then an effective mass λf 〈ϕ〉 is generated
when ϕ acquires a VEV. Assuming λf . 1, mf cannot be larger than the sym-
metry breaking scale 〈ϕ〉. In the SM, the ordinary quarks and leptons are chiral
under both SU(2) and U(1)Y , and ϕ is the Higgs doublet. Similar constraints
apply to new fields occurring in U(1)′ models, which are frequently quasi-chiral,
i.e., non-chiral under the SM but chiral under U(1)′.

Renormalizability of a low-energy gauge theory requires the absence of triangle
and mixed gauge-gravitational anomalies2. For the SM, the non-trivial conditions
are ∑

f

Yf = 0,
∑
f

Y 3
f = 0,

∑
f∈3,3∗

Yf = 0,
∑
f∈2

Yf = 0, (28)

where the sum extends over all left-handed fermions (Yf = yfL) and antifermions
(Yfc = −yfR). The first condition is the mixed anomaly; the sum is over color
triplets and antitriplets in the third [SU(3)2Y ] condition; and the sum is over
SU(2) doublets in the last [SU(2)2Y ] condition. The sum includes counting
factors of 3 for families, 3 for color triplets, and 2 for SU(2) doublets, since SU(3)

2See Section 3 for the role of anomalous U(1)′ s.
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and SU(2) commute with hypercharge and additional U(1)′ s. For example, the
second [Y 3] condition is

3[6Y 3
Q + 2Y 3

L + 3Y 3
uc + 3Y 3

dc + Y 3
ec ] = 0, (29)

where Q and L refer respectively to quark and lepton doublets. This is satisfied by
a cancellation between quark and lepton terms. With an additional U(1)′ with
charge Q2, there are additional conditions obtained from Eq. 28 by replacing
Y by Q2. There are also mixed [Y U(1)′] conditions

∑
f Y Q

2
2 =

∑
f Y

2Q2 =
0. For n > 1 additional U(1)′ there are similar conditions for every Qβ, β ≥
2 as well as

∑
f Y QαQβ =

∑
f QαQβQγ = 0. All of these sums include any

extra chiral fermions in the theory, such as the superpartners of Higgs scalars in
supersymmetry. Non-chiral fermion pairs cancel.

Even for a single U(1)′ it is easy to show that the anomaly conditions cannot
be satisfied by the SM fermions alone if the U(1)′ charges are the same for all
three families, except for the trivial case Q2 = 0. ( Q2 = cY is also possible, but
this is equivalent to Q2 = 0 after performing a rotation on Bµ and Z0

2µ.) Thus, al-
most all U(1)′ constructions involve additional fermions, known as exotics. These
may be singlets under the SM gauge group, such as a singlet right-handed neu-
trino, or they may carry nontrivial SM quantum numbers. Precision electroweak
constraints strongly restrict, but don’t entirely exclude, the possibilities of new
fermions chiral under SU(2) × U(1)Y (41), so such exotics are usually assumed
to be quasi-chiral, e.g., both left and right-handed components might be SU(2)
doublets, or both might be singlets. A typical example is a new SU(2)-singlet
heavy down-type quark D with qD = −1/3 and its partner Dc.

One can introduce vector pairs that are charged but non-chiral under both the
SM and U(1)′. These do not contribute to the anomaly conditions, but contribute
to the renormalization group equations (RGE) for the gauge couplings, and may
also be relevant to the decays of exotics.

If two U(1)′ chargesQα,β (one of these can be Y ) are both generators of a simple
underlying group, then one expects them to be orthogonal, i.e.,

∑
f QαfQβf = 0

for α 6= β, with a corresponding condition for the scalar charges. However, this
condition need not hold without such an embedding or for a more complicated
one, or it could be violated due to kinetic mixing (Section 2.4). Furthermore, all
fermions, including the non-chiral ones, contribute to the orthogonality condition.
In particular, an apparent violation of orthogonality could be due to the fact that
the contributions of a very heavy vector pair (or of heavy scalars) have not been
taken into account. There is always some freedom to perform rotations on the
gauge fields Z0

αµ, e.g., to make the U(1)′ charges orthogonal (at least with respect
to the fermions, in a nonsupersymmetric theory). However, such a rotated basis
may not coincide with either the mass or kinetic eigenstates.

2.4 Kinetic Mixing

The most general kinetic energy term for the two gauge bosons Z0
αµ and Z0

βµ in
U(1)α × U(1)β is

Lkin → −
cα
4
F 0µν
α F 0

αµν −
cβ
4
F 0µν
β F 0

βµν −
cαβ
2
F 0µν
α F 0

βµν , (30)

where F 0
αµν = ∂µZ

0
αν − ∂νZ0

αµ. One can put the first two terms into canonical
form cα = cβ = 1 by rescaling the fields, and take cαβ = sinχ. Since U(1)
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field strengths are gauge invariant, the cross (kinetic mixing) term does not spoil
the renormalizability (61). Even if χ = 0 at tree level, it can be generated by
loop effects if there are particles in the theory that are simultaneously charged
under both U(1)’s (61) -(66). The mixing term can be cast as a cross term
in the renormalization group equations (RGE) for the gauge couplings, with
a coefficient proportional to

∑
mf<µ

QαfQβf , where µ is the RGE scale, with
corresponding contributions from scalars. Even for orthogonal charges the sum
at lower mass scales may be nonzero due to the decoupling of heavy particles.
Such RGE effects are usually of order a few % in χ, but could be larger if there
are many decoupled states (65). A non-zero χ can also be generated by string
loop effects in superstring theory. These contributions are small in the heterotic
constructions considered in (67). However, if one of the U(1) factors is broken
in a hidden sector at a large scale, the associated D terms could propagate this
scale to the ordinary sector by kinetic mixing, destabilizing the supersymmetry
breaking scale and leading to negative mass-square scalars (67).

Now, consider the consequences of kinetic mixing for a single extra U(1)′, i.e.,
α = 1, β = 2. Lkin can be put in canonical form (for c1,2 = 1, c12 = sinχ) by
defining (

Z0
1µ

Z0
2µ

)
=
(

1 − tanχ
0 1/ cosχ

)(
Ẑ0

1µ

Ẑ0
2µ

)
≡ V

(
Ẑ0

1µ

Ẑ0
2µ

)
, (31)

where V is non-unitary. In the new Ẑ basis, the mass matrix in Eq. 18 becomes
V TM2

Z−Z′V , which can be diagonalized by an orthogonal matrix UT . Similarly,
the interaction term in Eq. 9 becomes

(g1J
µ
1 g2J

µ
2 )
(
Z0

1µ

Z0
2µ

)
≡ J T

(
Z0

1µ

Z0
2µ

)
→ J TV

(
Ẑ0

1µ

Ẑ0
2µ

)
= J TV UT

(
Z1µ

Z2µ

)
,

(32)
where Z1,2 are the mass eigenstates. These transformations are analyzed in detail,
in, e.g., (66). The essential feature can be seen for ∆2 = 0, for which

V TM2
Z−Z′V =

(
M2
Z0 −M2

Z0 tanχ
−M2

Z0 tanχ M2
Z0 tan2 χ+M2

Z′/ cos2 χ

)
. (33)

One sees immediately that for M2
Z0 = 0 there is a zero eigenvalue, even for large

χ, i.e., any shift in the lighter mass induced by kinetic mixing is proportional
to the light mass and therefore small. In fact, for |M2

Z0 | � |M2
Z′ |, ∆2 = 0, and

|χ| � 1 one has M2
1 ∼M2

Z0−M4
Z0χ

2/M2
Z′ , a negligible shift. The only significant

effect in this limit is that the couplings become

g1J
µ
1 Z1µ + (g2J

µ
2 − g1χJ

µ
1 )Z2µ, (34)

i.e., the coupling of the heavy boson is shifted to include a small component
proportional to J1. The light boson couplings are not affected to this order. Of
course, one must still include the further effects of mass mixing (∆2 6= 0).

In a supersymmetric theory the charges in the U(1)2 D terms are also shifted,
g2Q2 → g2Q2 − g1χQ1. There can also be kinetic mixing between the U(1)′

gauginos (68), with consequences analogous to those for the gauge bosons.

2.5 One and Two Higgs Doublets, Supersymmetry, and the µ
Problem
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2.5.1 Higgs Doublets The standard model involves a single Higgs doublet

φ =
(
φ+

φ0

)
, which has Yukawa couplings (ignoring family indices)

− LY uk = hdQ̄LφdR + huQ̄Lφ̃uR + heL̄Lφe
−
R + hνL̄Lφ̃νR + h.c., (35)

where QL ≡
(
uL
dL

)
, LL ≡

(
νL
e−L

)
, and νR is the right-handed (SM-singlet)

neutrino. The tilde field is defined by

φ̃ ≡ iσ2φ∗ =
(

φ0∗

−φ−
)
, (36)

where σ2 is the second Pauli matrix. It is essentially the Hermitian conjugate of φ,
but transforms as a 2 rather than a 2∗ under SU(2), and has y = −1/2. A single
doublet suffices for the SM, but in many extensions, including supersymmetry
and many U(1)′ models, the φ̃ couplings are not allowed. One must introduce a
second (independent) doublet φu, as in Eq. 19, which plays the role of φ̃, while
φd plays that of φ.

In supersymmetric models it is convenient to work entirely in terms of (left)
chiral superfields, such as Q,L, uc, dc, e+, and the SM singlet νc which is con-
jugate to νR (we do not distinguish between chiral superfields and their com-
ponents in our notation–the context should always make the meaning clear).
Furthermore, supersymmetry (and anomaly constraints) require two Higgs dou-

blets Hu =
(
H+
u

H0
u

)
and Hd =

(
H0
d

H−d

)
with YHu,d = ±1/2, defined so that the

MSSM superpotential is

W = µHuHd − hdQHdd
c + huQHuu

c − heLHde
+ + hνLHuν

c. (37)

Doublets are contracted according to HuHd ≡ εabHuaHdb, etc., where ε12 =
−ε21 = 1. The two sets of Higgs doublets are related by Hu,d = ∓φ̃u,d.
2.5.2 Non-Holomorphic Terms In some U(1)′ extensions of the MSSM,

some of the Yukawa couplings in Eq. 37 may be forbidden by the U(1)′ gauge sym-
metry. In some cases, however, the operators involving the wrong Higgs field, such
as QH̃ud

c or LH̃ue
+, may be U(1)′ invariant. Such non-holomorphic operators

are not allowed in W by supersymmetry, but could be present in the Kähler po-
tential, where they would lead to corresponding non-holomorphic soft terms (69)
for the scalar squarks and sleptons. These then lead to fermion masses at one
loop by gluino or neutralino exchange. However, in most supersymmetry breaking
schemes it is difficult to generate a large enough effective Yukawa (70), because
the non-holomorphic soft terms have an additional suppression (compared to the
usual soft SUSY breaking scale of MSUSY ∼ 1 TeV) of MSUSY /Mmed, where
Mmed � MSUSY is the SUSY mediation scale (such as the Planck scale for su-
pergravity mediation).
2.5.3 The µ Problem One difficulty with the MSSM is the µ problem (71),
i.e., the supersymmetric Higgs mass µ in Eq. 37 could be arbitrarily large, but
phenomenologically needs to be of the same order as the soft supersymmetry
breaking terms. In many supersymmetric U(1)′ models this problem is solved
because an elementary µ term is forbidden by the U(1)′, but a trilinear Wµ =
λSSHuHd is allowed, where S is a singlet under the SM but charged under the
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U(1)′. Then, a dynamical effective µeff = λS〈S〉 is generated that is related to
the scale of U(1)′ breaking (31,72,73), as will be further discussed in Section 5.1.1.
This mechanism can also be associated with discrete or other symmetries (74).
An alternative solution, the Giudice-Masiero mechanism, generates µ through a
nonrenormalizable operator in the Kähler potential (75). It is especially useful
when an elementary µ term is allowed by the low energy symmetries of the theory,
but is forbidden by the underlying string construction. This mechanism can also
be used to generate mass for vector pairs in U(1)′ theories.

3 Models

There are enormous numbers of U(1)′ models, and it is only possible to touch
on the major classes and issues here. The models are distinguished by: (a) the
coupling constants gα, which are often assumed to be of electroweak strength, but
could be larger or smaller. (b) The U(1)′ breaking scale. In some scenarios this is
arbitrary, with no good reason to expect it to be around the TeV scale. However,
in supersymmetric models it is usually at the TeV scale, unless the breaking
is associated with an F and D flat direction, when it could be much larger.
The TeV scale is also expected when the U(1)′ is associated with alternative
models of electroweak breaking. String constructions usually imply some Z ′ s
close to the string scale, and often involve lighter ones as well. Finally, a Z ′

could actually be lighter than the electroweak scale if its couplings to the SM
fields are small. (c) Other critical issues are the charges of the SM fermions and
Higgs doublet, and whether the fermion charges are family universal; the type
of scalar responsible for the U(1)′ breaking; whether additional exotic fields are
needed to cancel anomalies; whether the theory is supersymmetric (so that the
Higgs superpartners must be included in the anomaly considerations); whether
the Yukawa couplings of the ordinary fermions are allowed by the U(1)′ symmetry;
and whether other couplings, such as those associated with the supersymmetric
µ parameter, R-parity violation, and Majorana neutrino masses are allowed.

3.1 Canonical Examples

3.1.1 The sequential model The sequential ZSM boson is defined to have
the same couplings to fermions as the SM Z boson. The ZSM is not expected in
the context of gauge theories unless it has different couplings to exotic fermions, or
if it occurs as an excited state of the ordinary Z in models with extra dimensions
at the weak scale. However, it serves as a useful reference case when comparing
constraints from various sources.
3.1.2 Models based on T3R and B − L One of the simplest and most

common classes of models involves SU(2)×U(1)3R ×U(1)BL, where the U(1)3R

generator T3R is 1
2 for (uR, νR), −1

2 for (dR, e−R), and 0 for fL; and the U(1)BL
generator is TBL ≡ 1

2(B − L), where B(L) is baryon (lepton) number; and νR
are right-handed neutrinos. (See Table 1.) T3R and TBL are related to weak
hypercharge by Y = T3R +TBL. T3R occurs in left-right symmetric models based
on the group GLR ≡ SU(2)L × SU(2)R × U(1)BL (for a review, see (76)) and
in SO(10) models (which contain GLR) (30, 23). The Higgs doublet φ can be
assigned T3R = 1

2 and TBL = 0. However, in the GLR or SO(10) embeddings
(or in supersymmetric versions), there are two Higgs doublets, φu,d, as defined
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in Eq. 19, with T3R = ∓1
2 . All of these versions are anomaly-free after including

the three νR.
For these models, the fermion neutral current couplings are

− LNC = gJ3LW3L + gRJ3RW3R + gBLJBLWBL, (38)

where J3L ≡ J3, J3R and JBL are the currents corresponding to T3R and TBL,
the g’s and W ’s are the coupling constants and gauge bosons, and the Lorentz
indices have been suppressed.

We anticipate that U(1)3R×U(1)BL will be broken to U(1)Y at a scale MZ′ �
MZ0 , so it is convenient to first transform the gauge bosons W3R and WBL to a
new basis B and Z0

2 , where B is identified with the SM U(1)Y boson,

− LNC = gJ3LW3L + g′JYB + g2J2Z
0
2 = eJemA+ g1J1Z

0
1 + g2J2Z

0
2 , (39)

as in Eq. 9. Let us first assume that the gauge kinetic terms are canonical, i.e.,
with unit strength and no kinetic mixing, so that orthogonal transformations
on the three gauge bosons will leave the kinetic terms invariant. Taking B ≡
cos γ W3R+sin γ WBL and choosing γ so that B couples to g′Y , one finds 1/g′2 =
1/g2

R + 1/g2
BL, and that the orthogonal gauge boson Z0

2 = sin γ W3R− cos γ WBL

couples to the current J2 associated with the charge

QLR =

√
3
5

[
αT3R −

1
α
TBL

]
, (40)

where
α =

gR
gBL

=
√
κ2 cot2 θW − 1, (41)

with κ ≡ gR/g. The coupling has been normalized to

g2 =

√
5
3
g tan θW ∼ 0.46 (42)

for later convenience.
One interesting case is when GLR survives down to the TeV scale. This is

usually studied assuming a left-right symmetry under the interchange of the two
SU(2) factors (76), in which case gR = g and α ∼ 1.53 for sin2 θW ∼ 0.23. Two
forms of the model are often considered. In both cases, the Higgs doublets φu,d
responsible for fermion mass transform as (2, 2)0 under SU(2)L×SU(2)R, where
the subscript is the TBL charge. In one class, an additional doublet pair δR,L
transforming as (1, 2)1/2 + (2, 1)1/2 is introduced, with the VEV of δ0

R breaking
GLR to the SM. In the other, one instead introduces a triplet pair ∆R,L trans-
forming as (1, 3)1 + (3, 1)1. The ∆0

R VEV not only breaks GLR but also leads to
a large Majorana mass for the νR and therefore a small νL mass by the seesaw
mechanism (77). The low-scale left-right model also implies a new W±R which
couples to right-handed currents and can mix with the SM W±. Strategies for
determining the symmetry breaking pattern were described in (78), and limits
on the charged sector masses and mixings for general models without left-right
symmetry are given in (79,41).

The simple forms of the (supersymmetric) left-right model are not consistent
with gauge unification unless the SU(2)R breaking occurs at a much higher scale
(e.g., 1012 GeV). Such a large scale is also required by current allowed ranges for
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the neutrino masses in the triplet versions. In some cases, the initial breaking can
leave U(1)3R × U(1)BL unbroken. Realistic SO(10) breaking patterns suggest α
in the range 0.7−0.9 (20). An important special case is the χ model, which occurs
when SO(10) breaks directly to SU(5) × U(1)χ. This corresponds to Eq. 40 for
κ = 1 and sin2 θW = 3/8 (which is the value predicted by SU(5) at the unification
scale), leading to α =

√
2/3 ∼ 0.82.

A generalization of this type of model is based on SU(2)×U(1)Y ×U(1)2, where
Q2 is a linear combination QY BL = aY + bTBL ≡ b(zY + TBL), where b 6= 0. It
is convenient to normalize b so that the coupling g2 is given by Eq. 42, or alter-
natively one can choose b = 1 and take g2 to be arbitrary. The U(1)3R×U(1)BL
limit in Eq. 40 corresponds to choosing b2z(1 + z) = −3/5 with α ≡

√
5/3bz.

QY BL is anomaly free for the standard model fermions (including νR) (80). Y
and QY BL are non-orthogonal (i.e.,

∑
f YfQ

Y BL
f 6= 0 when summed over a family

of the known left-handed fermions and antifermions), except for the special case
of U(1)3R×U(1)BL, but it could come about, e.g., by kinetic mixing, as discussed
in Section 2.3. The pure B−L model (z = 0) is often studied phenomenologically,
and has the property that the ordinary Higgs doublets do not induce Z−Z ′ mix-
ing. The models in this class have been systematically discussed in (81), including
generalizations with an arbitrary number of νR with nonuniversal charges.

This entire class of models based on T3R and TBL (or Y and TBL) are perhaps
less interesting in a supersymmetric context, because the two supersymmetric
Higgs doublets Hu,d form a vector pair with T3R = ±1

2 and TBL = 0. Therefore,
an elementary µ term in Eq. 37 is not forbidden by the extra U(1)′. Similar
difficulties apply to the SM singlet supermultiplets that are needed to break the
U(1)′, since they would most likely be introduced as non-chiral vector pairs to
avoid anomalies. (One could instead give large VEVs to the scalar partners of
the νc, but this would break R-parity and would be challenging for neutrino
phenomenology.)
3.1.3 The E6 models Many Z ′ studies focus on the two extra U(1)′ s which
occur in the decomposition of the E6 GUT (21,22,23), i.e., E6 → SO(10)×U(1)ψ
and SO(10) → SU(5) × U(1)χ. We consider them only as simple examples of
anomaly-free U(1)′ charges and exotic fields, and do not assume a full underlying
grand unified theory. In E6, each family of left-handed fermions is promoted to
a fundamental 27-plet, which decomposes under E6 → SO(10)→ SU(5) as

27→ 16 + 10 + 1→ (10 + 5∗ + 1) + (5 + 5∗) + 1, (43)

as shown in Table 2. In addition to the standard model fermions, each 27-plet
contains two standard model singlets, νc and S (which may be charged under the
U(1)′). The νc may be interpreted as the conjugate of the right-handed neutrino.
There is also an exotic color-triplet quark D with charge −1/3 and its conjugate
Dc, both of which are SU(2) singlets, and a pair of color-singlet SU(2)-doublet

exotics, Hu =
(
H+
u

H0
u

)
and Hd =

(
H0
d

H−d

)
with YHu,d = ±1/2. Hd transforms

the same way as Hc
u ≡ H̃u, the (tilde) conjugate of Hu under the SM. The exotic

fields are all therefore singlets or non-chiral under the standard model, but may
be chiral under the U(1)′.

The E6 models can be considered in both non-supersymmetric and supersym-
metric versions. In the supersymmetric case, the scalar partners of the S and
νc can develop VEVs to break the U(1)′ symmetry, though the latter (as well
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as a VEV for the scalar partner of the ν) would break R-parity and may be
problematic for neutrino phenomenology. Similarly, the scalar partners of one
Hu,d pair can be interpreted as the two Higgs doublets of the MSSM. The two
additional Hu,d families may be interpreted either as additional Higgs pairs or
as exotic-leptons (Hd has the same SM quantum numbers as an ordinary lepton
doublet, while Hu would be conjugate to a right-handed exotic doublet).

Table 2 also lists the U(1)χ and U(1)ψ charges of the 27-plet. By construction,
the fields in an irreducible representation of SO(10) (SU(5)) all carry the same
ψ (χ) charges. Most studies assume that only one Z ′, coupling to the linear
combination

Q(θE6) = cos θE6Qχ + sin θE6Qψ, (44)

where 0 ≤ θE6 < π is a mixing angle, is relevant at low energies. (One can also
include a kinetic mixing correction −εY to the effective charge, as in Eq. 34).
As discussed in Section 3.1.2, the χ model (θE6 = 0) is a special case of the
T3R and B − L models, supplemented with additional exotic fields in the 10 + 1
of SO(10). Since the latter are non-chiral in this case they may be omitted,
or one or more 10’s may be introduced as Higgs fields. The ψ model (θE6 =
π/2), on the other hand, has chiral exotics and requires the three full 27-plets.
Using Eq. 11 one sees that the currents of the fields in the 16 and 10 have
purely axial couplings to the Zψ (this only holds for the ν if it pairs with the
νc to form a Dirac fermion). Another commonly studied case is the η model,

Qη =
√

3
8Qχ −

√
5
8Qψ = −Q(θE6 = π − arctan

√
5/3 ∼ 0.71π), which occurs

in Calabi-Yau compactifications of the heterotic string if E6 breaks directly to a
rank 5 group (82) via the Wilson line (Hosotani) mechanism. The inert model,
QI = −Q(θE6 = arctan

√
3/5 ∼ 0.21π), has a charge orthogonal to Qη and

follows from an alternative E6 breaking pattern (21). In the neutral N model
(θE6 = arctan

√
15 ∼ 0.42π) (83, 84, 85, 86), the νc has zero charge, allowing a

large Majorana mass or avoiding big bang nucleosynthesis constraints for a Dirac
ν, as discussed in Section 5.6. It essentially interchanges the assignments of the
S and νc and of the two 5∗ representations (which have the same standard model
quantum numbers) with respect to the χ model, and is basically the same as
the alternative left-right model in (87, 88). The secluded sector model (θE6 =
arctan(

√
15/9) ∼ 0.13π) (89) will be discussed in Section 3.5.3.

The E6 models allow the Yukawa couplings needed to generate masses for the
standard model and exotic fermions. In particular, in the supersymmetric case
the superpotential terms

W = −hdQHdd
c+huQHuu

c−heLHde
++hνLHuν

c+λSSHuHd+λDSDDc (45)

are all allowed, where family indices have been neglected. (In the non-SUSY
case, two Higgs doublets, analogous to Hu and Hd, are required.) From Eq. 45
we see that the E6 models all allow a dynamical µeff , while an elementary µ is
forbidden in all but the χ model.

The supersymmetric E6 model with three 27-plets can incorporate one or more
pairs of Higgs doublets Hu,d in the 5 + 5∗ pairs. However, that version of the
model is not consistent with the simple form of gauge unification observed in
the MSSM for the SM subgroup. That is because the complete extra 5 + 5∗

multiplets give equal contributions to the SU(3), SU(2), and U(1)Y β functions
at one loop, so the unification conditions are similar to the MSSM with 3 families
but no Higgs pair. Unification can be restored by introducing an Hu and Hc

u pair
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from an incomplete 27 + 27∗ representation (90). (The physical Hu could either
be this one or from the complete 27-plets.) This pair is completely non-chiral,
so it does not introduce any anomalies, but at the cost of introducing a rather
arbitrary aspect to the model. Also, there is no obvious reason (except perhaps
the mechanism in (75)) why this extra pair should be at the electroweak or TeV
scale, reintroducing a form of the µ problem. Nevertheless, the unification of the
SM gauge couplings and the unification scale MX are then the same as in the
MSSM at one loop, though the value of the gauge coupling at MX is increased
because of the extra exotics.

If the U(1)′ really derives from an E6-type GUT which breaks directly to

SU(3)× SU(2)× U(1)Y × U(1)′, one expects that g2 =
√

5
3g
′ at the unification

scale, where
√

5
3g
′ is the GUT-normalized hypercharge coupling. Running down

to the TeV scale, this implies

g2 =

√
5
3
g tan θWλ1/2

g , (46)

where λ1/2
g ∼ 1 up to a (θE6-dependent) correction of a few % due to the U(1)′

charge of the incomplete 27 + 27∗. Eq. 46 can be taken as a definition of λg for
an arbitrary model. It is typically of order unity even for more complicated E6

breaking patterns (21), and was taken to be unity by construction for the GLR
model.

In a full E6 grand unified theory the exotic D,Dc partners of the Higgs doublets
would have diquark Yukawa couplings such as WDQ ∼ DQQ or Dcucdc, as well
as leptoquark couplings WLQ ∼ Ducec or DcQL, which are related by E6 to
the ordinary Higgs Yukawa couplings. These would lead to rapid proton decay
mediated by the D and Dc unless their masses (and therefore the U(1)′ breaking
scale) is comparable to the unification scale. A TeV-scale Z ′ therefore requires
that the GUT Yukawa relations are not respected, so that either the leptoquark
or the diquark couplings (or both) are absent. This could come about in a string
construction if the fields in the multiplet are not directly related to each other
in the underlying theory (see, e.g., (91)). See (86, 92) for a detailed study of
complete E6 models with a low energy U(1)′. Alternatively, one can simply view
the charges and exotics as as example of an anomaly-free construction.

3.2 Anomaly-Free Sets

Many authors have described classes of U(1)′ models by requiring the cancella-
tion of anomalies and other criteria (81, 73, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
103, 104, 105). Usually some conditions are applied on the types of exotics. It
is usually assumed that any exotic fermions are non-chiral under the standard
model, i.e., that they occur in vector pairs ψ + ψc. This avoids the introduction
of any SM anomalies and also reduces the sensitivity to precision electroweak
constraints (41). One can then constrain the exotic representations with respect
to the SM and their U(1)′ charges from the mixed SM-U(1)′ conditions∑

f∈3,3∗

Q2f =
∑
f∈2

Q2f =
∑
f

Y 2Q2f =
∑
f

Y Q2
2f = 0. (47)

The pure U(1)′ conditions
∑

f Q2f =
∑

f Q
3
2f = 0 further restrict the charges.

Alternatively, some authors ignore the latter because they can be satisfied by



16

adding SM singlets to the model. This can always be done with rational charges3

if the mixed anomaly solutions are rational (101, 102). However, because of its
cubic nature the singlet structure is sometimes complicated.

In non-supersymmetric models it is often assumed that the only chiral fermions
are the three ordinary families and 3 corresponding families of exotics. This
assumption is often not valid in supersymmetric models, where one must also
take into account the fermionic partners of the Higgs doublets and of the SM
singlets which break the U(1)′. These, as well as other exotics, often do not
occur in three families (exceptions are the E6 models, where they do occur in
three families, and the T3R, B−L models, where the Higgs doublets and singlets
are usually non-chiral).

Another issue in the supersymmetric models is whether the MSSM unification
of the SM gauge couplings is preserved. The simplest way for this to occur is
for the three SM families, which transform as 10 + 5∗ under SU(5), and the
two Higgs doublets Hu,d, are supplemented by exotics which transform as 5 + 5∗

and/or 10+10∗. It is not necessary for the fields in a SU(5) multiplet to have the
same U(1)′ charges (e.g., they may have different origins in an underlying string
theory), and in fact under minimal assumptions they must be different (102). An
alternative is to allow non-chiral exotics, as in the E6 models, reintroducing a
form of the µ problem.

Other conditions are often employed along with the anomaly and unification
constraints. These may involve the existence of quark and lepton Yukawa cou-
plings for one or two Higgs doublets, constraints on neutrino mass, Yukawas that
can lead to masses for the exotics, operators that can allow exotic decays, whether
the charges are family universal, whether the U(1)′ solves the supersymmetric µ
problem, whether it forbids R-parity violating operators (96,97,98) or other op-
erators relevant to proton decay (104,106,107,108), whether it plays the role of a
family symmetry relevant to the fermion masses and mixings (97,109), and many
other possible conditions.

The QY BL models of Section 3.1.2, which do not require any exotics other
than νR, are discussed in (81). Four one-parameter families of models with three
families of exotics were constructed in (99). Two of these, referred to as q + xu
and 10+x5∗ are equivalent to the QY BL and the E6 model Q(θE6), respectively,
while the others (B−xL and d−xu), have not emerged from other considerations
for general x. The 10+x5∗ and d−xu would require two Higgs doublets to have
normal quark and charged lepton Yukawas.

The most systematic classification of the supersymmetric models is given in (96),
which requires anomaly cancellation, minimal gauge unification with no non-
chiral states, exotic masses, and the absence of rapid proton decay or fractional
electric charges. Classes of solutions were found, which required that more than
one SM singlet participates in the U(1)′ breaking. A particularly simple one is
the Qψ̃ model. It involves two 5 + 5∗ pairs (Di + Li) and (Dc

i + Lci ), i = 1, 2,
which are analogous to the (D,Hu) and (Dc, Hd) of the E6 model, along with
Hu,d and the three SM families. The U(1)′ symmetry is broken by the VEVs of
two singlets, S and SD, which also generate masses for the Hu,d and Li, Lci (〈S〉)
and for Di, D

c
i (〈SD〉). Additional singlets are needed for the U(1)′ anomalies.

The Qψ̃ charges are listed in Table 3. The fermion currents are purely axial. It

3One expects the charges to be rational if the U(1)′is embedded in a simple group, but this
need not be the case for more complicated embeddings, such as the SM couplings in Eq. 8.
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is straightforward to generalize the Qψ̃ model to Q55∗ , which allows non-axial
charges and n55∗ pairs of 5 + 5∗. Three distinct chiral singlets must acquire
VEVs to generate all of the exotic masses, except for n55∗ = 2 or 3. Additional
SM singlets are needed for the U(1)′ anomalies and to generate singlet masses.
The gauge coupling g2 is arbitrary.

It was shown in (100) that anomaly-free supersymmetric models can be con-
structed without any exotics (not even νc) and only one singlet S (which generates
a dynamical µeff ) provided one allows family nonuniversal charges (an early ex-
ample was also given in (73)). It is possible to choose the charges to avoid flavor
changing neutral current (FCNC) effects (see Section 5.4). However, the U(1)′

forbids some of the quark and lepton Yukawa interactions in the superpotential.
These could possibly be generated by non-holomorphic soft terms, as described
in Section 2.5.

3.3 TeV Scale Physics Models

In this section we briefly consider various models involving new TeV scale physics,
especially those motivated as alternatives to the elementary Higgs for electroweak
symmetry breaking.

As a preliminary, consider a direct product of two identical gauge group G ≡
G1 ×G2, with generators ~T1,2 and associated currents ~J1,2. Then

− L = g1
~J1 · ~W1 + g2

~J2 · ~W2. (48)

G can be spontaneously broken to the diagonal subgroup GD with generators
~TD = ~T1 + ~T2 if there is a Higgs field which transforms equivalently under both
groups. An example is SU(N)×SU(N), with a Higgs ϕαa transforming as N∗×N,
with 〈ϕαa 〉 = cδαa . It is then straightforward to show that

− L = gL( ~J1 + ~J2) · ~WL + gL(cot δ ~J1 − tan δ ~J2) · ~WH , (49)

where ~WL = sin δ ~W1 + cos δ ~W2 is the massless boson, WH is the massive orthog-
onal combination, tan δ = g2/g1, and gL = g1 sin δ. WL can acquire mass and
WL,H can mix due to additional Higgs fields. A simple illustration is the SM
breaking of U(1)T3 × U(1)Y to U(1)em by the ordinary Higgs doublet.
3.3.1 Little Higgs, Twin Higgs, and Un-Unified Models In Little

Higgs models (36) the Higgs is a pseudo-Goldstone boson of an approximate
global symmetry. (For reviews, see (37, 38, 39).) The quadratic divergences in
the Higgs mass-square are cancelled by new TeV gauge bosons, fermions, and
scalar particles related to those of the SM. There are a wide class of models, all
of which involve heavy neutral and charged gauge bosons. For example, in the
Littlest Higgs models (110) the electroweak gauge group is [SU(2)×U(1)]2, which
is a subgroup of a larger global group. The SM left-handed fermions are charged
under only the first SU(2). The SU(2)2 symmetry is broken by a condensate
charged under both factors to an unbroken diagonal subgroup, and the U(1)
charges are chosen to yield U(1)Y × U(1)H , where Y is the normal hypercharge.
Thus, the residual gauge group is SU(2)L × U(1)Y × SU(2)H × U(1)H . From
Eq. 49, the heavy charged W±H and neutral W 0

H couple to the left-handed SM
quarks and leptons with the SU(2)L generators ~τ/2 and with coupling g cot δ.
The neutral U(1)H boson is lighter, with model dependent couplings. Precision
electroweak constraints are rather severe, unless one pushes the Little Higgs scale
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to be uncomfortably large compared to the original motivation. However, the
difficulties can be reduced if the U(1)H is not gauged.

The precision electroweak constraints are greatly weakened (they are only gen-
erated at loop level) if one introduces a discrete symmetry, T -parity (111, 112).
This is analogous to R-parity in supersymmetry, and requires that the heavy
states, such as the new gauge bosons, only couple in pairs to the ordinary parti-
cles. This also means that they must be pair produced at colliders. The lightest
could be stable and possibly be a dark matter candidate. However, it has re-
cently been argued that the T -parity may be broken by anomalies (?), leading to
decays, e.g., into ZZ.

In the Twin Higgs model (113) the Higgs quadratic divergences are canceled
by particles from a hidden sector that is a mirror of the SM and which mainly
communicates by an extended Higgs sector. The gauge bosons in the hidden
sector may essentially decouple from the SM particles and could even be massless,
while in other versions there may be kinetic mixing with the photon.

In the Un-unified model (114), the left-chiral SM quarks and leptons trans-
form under distinct SU(2) groups SU(2)q and SU(2)l with gauge couplings gq,l,
i.e., they are not unified. There is a single conventional U(1)Y . After diag-
onal breaking, one recovers the SM along with heavy W±,0H which couple to
g(cot δ ~Jq− tan δ ~Jl) using Eq. 49. For small tan δ the heavy bosons couple mainly
to quarks.
3.3.2 Extra Dimensions The existence of extra dimensions is suggested

by string models (42). There are a wide variety of models, depending on their
number, size, whether they are flat or warped, whether the SM fields are allowed
to propagate in the extra dimensions (i.e., in the bulk), etc. For a review, see (40).

The simplest case involves a single extra dimension of radius R, implying the
existence of Kaluza-Klein excitations of the states that can propagate in the
bulk, with mass ∼ n/R, n = 1, · · · . If only gravitons propagate, then R can
be large enough to probe in laboratory gravity experiments. However, if the
SM gauge bosons are also allowed to propagate, then R−1 must be larger than
O(TeV) (R . 10−17 cm). If the SM fermions and Higgs are not allowed to prop-
agate (i.e., confined to the brane), then the excitations of the SM gauge bosons
(W±, Z,A, gluon) couple to the same currents as their SM counterparts, but with
a coupling constant larger by

√
2 (43, 44). Current experimental limits require

R−1 & 7 TeV (45, 46). The limits are much weaker (O(300 GeV)) in universal
extra dimension models, in which all of the SM fields propagate uniformly in
the bulk (47, 48, 49, 50). Similar to R or T -parity, there is a KK-parity so that
the n = 1 states can only be pair produced and only contribute to electroweak
observables in loops. The lightest is stable. In variants in which the various
quarks and leptons are localized in different parts of the extra-dimensional space
(with implications for the flavor problem) the couplings of the Kaluza-Klein exci-
tations are family nonuniversal (since the overlap of the wave functions depends
on location). This leads to the possibility of FCNC effects (51), as discussed in
Section 5.4.

Models involving warped extra dimensions (52) may have all of the SM fields
confined to the infrared brane. However, much attention has been devoted to
the possibility that the SM fields other than the Higgs can also propagate in the
bulk (53,54,55,56), e.g., because in that case the theory is related to technicolor
models by the AdS/CFT correspondence (115). It is then useful to enhance
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the electroweak gauge symmetry to SU(2)L × SU(2)R × U(1)B−L to provide a
custodial symmetry to protect the electroweak ρ parameter (55). The Kaluza-
Klein excitations of the gauge bosons couple mainly to the t and b due to wave
function overlaps, and decays to WW and Z+ Higgs are also possible due to
mixings (see, e.g., (56)).
3.3.3 Strong Dynamics There have been many models in which strong

dynamics is involved in electroweak symmetry breaking, which often involve addi-
tional elementary gauge bosons or composite spin-1 states, which may be strongly
coupled.

Dynamical symmetry breaking (DSB) models in which the Higgs is replaced
by a fermion condensate are reviewed in (33,34,35). For example, topcolor mod-
els (116) typically involve new gluons and a new Z ′ that couple preferentially
and with enhanced strength to the third generation and which assist in forming a
top condensate. Nonuniversal extended technicolor models (34) also feature new
gauge interactions preferentially coupled to the third family.

The BESS (Breaking Electroweak Symmetry Strongly) models (117, 118) are
effective Lagrangian descriptions of models with a strongly interacting longitudi-
nal gauge boson sector, such as one expects in the large MH limit of the SM or
in some forms of DSB. There are vector and axial bound states which can mix
with the W±, Z, and A. They interact with the SM particles directly and by
mixing. The possibility that the electroweak bosons could be composite has also
been considered (119).

Another interesting model with no elementary or composite Higgs (120) is a
variant on the warped extra dimension scenario. However, instead of including
a Higgs field the electroweak symmetry is broken by boundary conditions. The
Kaluza-Klein excitations of the gauge bosons unitarize the high energy scattering
of longitudinal gauge bosons. More general classes of Higgless models may involve
fermiophobic Z ′ which may be produced and detected by their couplings to the
W and Z (121).

3.4 Non-Standard Couplings

Most of the canonical Z ′ models assume electroweak scale couplings, and that the
Z ′ couplings to most or all of the SM fermions are of comparable strength and
family universal, in which case existing experimental constraints require masses
not too much below 1 TeV (Section 4). However, there are many models with
different assumptions concerning the gauge couplings, charges, and scales.
3.4.1 Decoupled Models Leptophobic Z ′ s (122) do not couple to or-

dinary neutrinos or charged leptons, and therefore most direct electroweak and
collider searches are insensitive to them. They could emerge, e.g., in the E6 η
model in Table 2, combined with a (large) kinetic mixing (65) ε ∼ −1/

√
15; in

a flipped SU(5) model (123); or in models in which the Z ′ couples to baryon
number (124). Approximately leptophobic models were once suggested by ap-
parent anomalies in Z → bb̄ decays (see (125,126) for references), but are still an
interesting possibility for allowing Z ′ masses much smaller than a TeV. A purely
leptophobic Z ′ is still constrained by Z − Z ′ mixing effects (126), and could be
inferred by collider signals such as the production of tt̄ pairs, exotics (125), or
the same-sign dilepton decays of a pair of heavy Majorana neutrinos (127, 128).
They could even be light enough to be produced in Υ decays (129).
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Limits are also weak, e.g., if the Z ′ couples only to the second and third family
leptons (130). In fermiophobic models (11, 131) there are no direct couplings of
the Z ′ to the SM fermions, although they may be induced by ordinary or kinetic
mixing. An interesting possibility is that such fermiophobic Z ′ may couple to a
hidden sector (132,133), such as may be associated with supersymmetry breaking.
Mixing effects could therefore possibly be a means of probing such a sector (direct
Z ′ couplings to a hidden sector are considered in Section 5.5). Finally, a Z ′ with
canonical charges could still be much lighter than a TeV if its gauge coupling is
sufficiently small (10,134,135,136).
3.4.2 Stückelberg Models It is possible to write a U(1) gauge invariant

theory with a massive gauge boson Cµ by the Stückelberg mechanism (137). The
Lagrangian is

L = −1
4
CµνCµν −

1
2

(mCµ + ∂µσ)(mCµ + ∂µσ), (50)

where Cµν is the field strength tensor. Under a gauge transformation, ∆Cµ =
∂µβ, while the axion-like field σ is shifted, ∆σ = −mβ. A gauge-fixing term
can be added to Eq. 50 which cancels the cross term between C and σ, leaving a
massive C field and a decoupled σ. This is analogous to the Higgs mechanism, but
there is no field with a VEV and no physical Higgs boson. This mechanism has
recently been applied to a U(1)′ extension of the SM or the MSSM (138,139). For
example, if one replaces the second term in Eq. 50 by −(M2Cµ+M1Bµ+∂µσ)2/2
withM1/M2 ≡ ε� 1, then the C will mix with the A and Z, but there will remain
a massless photon. The new Z2 can be relatively light (e.g., several hundred
GeV), so ε must be small. If the C has no direct couplings to matter, the new
Z2 will decay only to SM particles via the mixing and will be very narrow. If
the C does couple to exotic matter, then the mixing with the photon will induce
tiny (generally) irrational electric charges of O(ε) for the exotic particles. Such
mixing with the photon is never induced by ordinary Higgs-type mixing if U(1)em
is unbroken, but can also be induced by kinetic mixing with another massless
boson (Section 3.5.1). Other applications, such as to dark matter, are reviewed
in (139).
3.4.3 Family Nonuniversal Models Another variant is the possibility of

family nonuniversal charges (e.g., (100)). A number of examples of Z ′ coupling
preferentially to the third family or to the t quark were mentioned in Sections 3.3.2
and 3.3.3. These could have enhanced gauge couplings, and could be observed as a
resonance in tt̄ production. String-derived Z ′ s often have nonuniversal couplings
as well (Section 3.6), as do the Kaluza-Klein excitations in extra-dimensional
theories in which the fermion families are spatially separated (Section 3.3.2).
Possible FCNC effects are consider in Section 5.4.

3.5 U(1)′ Breaking Scales

Most attention is given to possible electroweak or TeV scale Z ′ s, but there are
other possibilities. Here we describe massless, TeV scale, and intermediate scale
models. Models involving the GUT or string scales are described in Section 3.6.
3.5.1 A Massless Z ′ A Z ′ would be massless if the U(1)′ symmetry is

unbroken. This would imply an unacceptable long range force if it coupled to
ordinary matter unless the coupling were incredibly small (140). It would be
allowed if the primary coupling were to a hidden sector and communicated only



21

by higher-dimensional operators (141) or by kinetic mixing with the photon (61).
The latter scenario would induce a small fractional electric charge for hidden
sector particles.
3.5.2 Electroweak/TeV Scale Z ′ Models in which the U(1)′ is involved
in electroweak symmetry breaking, such as in Section 3.3, typically involve U(1)′

breaking at the electroweak or TeV scale.
In the U(1)′ extension of the MSSM with a single S field (26, 31, 73, 142, 90),

the part of the superpotential involving S and Hu,d is W = λSSHuHd, where we
have assumed QS 6= 0 and QS +Qu +Qd = 0. Like the MSSM, the minimum of
the tree-level potential always occurs along the charge-conserving direction with
only 〈H0

u,d〉 6= 0 (this assumes that the squark and slepton VEVs vanish). The
potential is then

V = VF + VD + Vsoft, (51)

where

VF = λ2
S

(
|H0

u|2|H0
d |2 + |S|2|H0

u|2 + |S|2|H0
d |2
)

VD =
g2

1

8
(
|H0

u|2 − |H0
d |2
)2 +

g2
2

2
(
Qu|H0

u|2 +Qd|H0
d |2 +QS |S|2

)2 (52)

Vsoft = m2
u|H0

u|2 +m2
d|H0

d |2 +m2
S |S|2 −

(
λSASSH

0
uH

0
d + h.c.

)
.

If S acquires a VEV, then the effective µ parameter is µeff = λS〈S〉, the cor-
responding effective Bµ is (Bµ)eff = λSAS〈S〉, and the Z − Z ′ mass matrix is
given by Eq. 18 and Eq. 20. One can define the fields so that λSAS and therefore
the VEVs νu,d and s defined after Eq. 20 are real and positive. There is no analog
of the first (second) term in VF (VD) in the MSSM.

For generic parameters one expects νu,d and s to be comparable. For example,
for λSAS large compared to the soft masses and Qu = Qd = −QS/2 one finds (73)
νu ∼ νd ∼ s, with negligible Z − Z ′ mixing and M2

Z′/M
2
Z ∼ 12g2

2Q
2
u/g

2
1, which

is typically of order 1. This case is excluded unless the model is leptophobic or
something similar.

A more likely scenario is that the soft parameters (|mu,d,S |, |AS |) are ofO(1 TeV),
with m2

S < 0. Then s2 ∼ −2m2
S/g

2
2Q

2
S and M2

Z′ ∼ −2m2
S . One can have a

smaller EW scale νu,d � s by accidental cancellations, which are not excessive
provided MZ′ is not too much larger than a TeV. In most supersymmetry media-
tion schemes m2

S is positive at a large scale such as the Planck scale. The running
m2
S can be driven negative at low scales radiatively provided it has sufficiently

large Yukawa couplings, such as λS and/or couplings to exotics such as in Eq. 45.
This is analogous to the MSSM in which mu can be driven negative by its large
Yukawa coupling to the top.
3.5.3 Secluded Sector and Intermediate Scales In the single S

model in Eq. 51 there is some tension between the electroweak scale and de-
veloping a large enough MZ′ . These can be decoupled without tuning when
there are several S fields. For example, in the secluded sector model (89) there
are four standard model singlets S, S1,2,3 that are charged under a U(1)′, with

W = λSSHuHd + λS1S2S3. (53)

(Structures similar to this are often encountered in heterotic string constructions.)
µeff is given by λS〈S〉, but all four VEVs contribute to MZ′ . The only couplings
between the ordinary (S,Hu,d) and secluded (S1,2,3) sectors are from the U(1)′
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D term and the soft masses (special values of the U(1)′ charges, which allow soft
mixing terms, are required to avoid unwanted additional global symmetries). It is
straightforward to choose the soft parameters so that there is a runaway direction
in the limit λ→ 0, for which the ordinary sector VEVs remain finite while the Si
VEVs become large. For λ finite but small, the 〈Si〉 and MZ′ scale as 1/λ. For
example, one can find MZ′ in the TeV range for λ ∼ 0.05 − 0.1. The secluded
model can be embedded in the E6 context (Table 2).

Intermediate Scale models (143, 144) are those in which the U(1)′ breaking is
associated with a F and D flat direction, such as the secluded model in Eq. 53
with λ = 0. However, let us consider a simpler toy model with two fields S1,2 with
QS1QS2 < 0. If there are no terms in W like SiSj or SiSjSk, then the potential
for S1,2 is

V (S1, S2) = m2
1|S1|2 +m2

2|S2|2 +
g2

2

2
(QS1 |S1|2 +QS2 |S2|2)2. (54)

The quartic term vanishes for |S2|2/|S1|2 = −QS1/QS2 . For simplicity, take
QS1 = −QS2 , and assume that at low energies m2

S1
< 0 and m2

S2
> 0, as would

typically occur by the radiative mechanism if W contains a term hDS1DD
c. If

m2 ≡ m2
S1

+ m2
S2
> 0 the minimum will occur at 〈S1〉 6= 0, 〈S2〉 = 0. If there

is also a λSS1HuHd term in W then 〈S1〉 and MZ′ will be at the EW scale (.
1 TeV), just as in the case of a single S. On the other hand, for m2 < 0, the
potential along the F and D flat direction S1 = S2 ≡ S is

V (S) = m2S2, (55)

which appears to be unbounded from below. In fact, V (S) is typically sta-
bilized by one or both of two mechanisms: (a) The leading loop corrections
to the effective (RGE-improved) potential result in m2 → m2(S), leading to
a minimum slightly below the scale at which m2(S) goes through zero, which
can be anywhere in the range 103 − 1017 GeV. (b) Another possibility is that
the F -flatness is lifted by higher-dimensional operators (HDO) in W , such as
W = (S1S2)k/M2k−3, where M is the Planck or some other large scale. This
would lead to 〈S〉 ∼

√
mM ∼ 1011 GeV for k = 2, m ∼ 1 TeV, and M the

Planck scale. In such models, HDO such as LHde
+(S/M)p or SHuHd(S/M)q

could also be important for generating small effective Yukawa couplings (and
therefore fermion mass hierarchies) or µeff � 〈S〉 terms (143). Implications for
neutrino mass are considered in Section 5.6.

3.6 Grand Unification, Strings, and Anomalous U(1)′

3.6.1 Grand Unification In a full grand unified theory (30, 23), such as
SO(10) or E6, the extra U(1)′ s must be broken at or near the GUT unification
scale to avoid rapid proton decay. However, as mentioned in Section 3.1.3 this
can be evaded in models which respect the GUT quantum numbers but not the
Yukawa relations.
3.6.2 String Theories Most semi-realistic superstring constructions yield
effective four-dimensional field theories that include the SM gauge group (not a
full four-dimensional GUT), as well as additional gauge group factors that often
involve additional U(1)′ s. (Examples include (145, 146, 147, 148, 149, 150, 151,
152, 107). For reviews, see (26, 153, 154).) Heterotic constructions often descend
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through an underlying SO(10) or E6 in the higher-dimensional space, and may
therefore lead to the T3R and B − L (i.e., QLR) or the E6-type charges. Addi-
tional or alternative U(1)′ structures may emerge that do not have any GUT-type
interpretation and therefore have very model dependent charges. Similarly, inter-
secting brane constructions often descend through Pati-Salam type models (76),
yielding QLR. Other branes can lead to other types of U(1)′ charges. For exam-
ple, the construction in (149) involves two extra U(1)′ s, one coupling to QLR

and the other only to the Higgs and the right-handed fermions.
Constructions often have one or multiple SM singlets which can acquire VEVs

to break the extra U(1)′. However, that is not always the case. For example, in
some of the QLR models (see, e.g., (149, 150)) the only fields available to break
the enhanced gauge symmetry are the scalar partners ν̃R of the right-handed
neutrinos (155). These act like the δ0

R defined in Section 3.1.2, but it is difficult
to reconcile the Z ′ constraints with neutrino phenomenology. This also occurs in
the simpler supersymmetric versions of the χ model.

The U(1)′ in string constructions may couple to hidden sector particles, and in
some cases they can communicate between the ordinary and hidden sectors (105,
156). The non-standard string U(1)′ often have family nonuniversal charges. This
can occur if the fermion families have different embeddings in the underlying
theory. A simple field-theoretic example is a variant on the E6 model in Table 2.
One could assign, e.g., the first two families (dci , Li), i = 1, 2, to the 5∗ from the
16 of SO(10), and the third to the 5∗ from the 10.
3.6.3 Anomalous U(1)′ The effective four-dimensional field theories aris-

ing from the compactification of a string theory usually contain anomalous U(1)′

factors. There is typically one anomalous combination in heterotic construc-
tions. In intersecting brane models (153) there are stacks of branes yielding
U(N) ∼ SU(N)×U(1), in which the U(1) is usually anomalous. Since the under-
lying string theory is anomaly free, these anomalies must be cancelled by a gener-
alized Green-Schwarz mechanism. In particular, the Z ′ associated with the U(1)′

acquires a (typically) string-scale mass by what is essentially the Stückelberg
mechanism in Eq. 50, with the axion field σ associated with an antisymmetric
field in the internal space (this sometimes applies to nonanomalous U(1)′ as well).
The U(1)′ still acts as a global symmetry on the low energy theory, restricting
the possible couplings and having possible implications, e.g., for baryon or lepton
number. In addition, effective trilinear vertices may be generated between the
Z ′ and the SM gauge bosons (157). It is possible that the string scale is actually
very low (e.g., TeV scale) if there is a large total volume of the extra-dimensional
space (a realization of the large extra dimension scenario). This would allow
TeV scale Z ′ s associated with anomalous (or sometimes nonanomalous) U(1)′ s,
without any associated Higgs scalar and with anomalous decays into ZZ, WW ,
and Zγ (158,159,160,161).

Anomalous U(1)′ s in heterotic constructions lead to Fayet-Iliopoulos (FI)
terms, which are effectively constant contributions to the U(1)′ D terms that
are close to the string scale. Smaller FI terms may also appear in intersect-
ing brane constructions which break supersymmetry. In many cases, FI terms
trigger scalar fields in the low energy theory to acquire VEVs to cancel them.
These VEVs in turn may lead to the breaking of gauge symmetries (such as other
nonanomalous U(1)′ s) and the generation of masses for some of the particles at
the FI scale, a process known as vacuum restabilization (see (147) for an exam-
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ple). Family nonuniversal U(1)′ s may be used to generate fermion textures using
the Froggatt-Nielsen mechanism (162,163,164,165). The elements are associated
with higher-dimensional operators allowed by the symmetry, and involve powers
of the ratio of the FI and Planck scales.

4 Experimental Issues

There are limits on Z ′ masses and Z−Z ′ mixing from precision electroweak data,
from direct and indirect searches at the Tevatron, and from interference effects at
LEP 2. In this section we briefly review the existing limits and future prospects
for discovery and diagnostics. FCNC effects for family nonuniversal couplings
and astrophysical/cosmological constraints are touched on in Section 5.

4.1 Constraints from Precision Electroweak

4.1.1 Parametrization Precision electroweak data include purely weak
νe and ν-hadron weak neutral current (WNC) scattering; weak-electromagnetic
interferences in heavy atoms and in e±e−, l±-hadron, and p̄p scattering; precision
Z pole physics; and associated measurements of the W and top mass. They have
verified the SM at the level of radiative corrections and strongly constrained
the possibilities for new physics below the TeV scale (41). There have been
a number of global analyses of the constraints from precision electroweak on a
possible Z ′ (166,122,167,58,59,34,168,169,170,171,172,173,174). Because of the
number of different chiral fermions involved, it is difficult to do this in a model
independent way, so most studies have focussed on specific classes of models, such
as described in Section 3.1, and have emphasized electroweak scale couplings and
family universal charges.

Low energy WNC experiments are affected by Z ′ exchange, which is mainly
sensitive to its mass, and by Z − Z ′ mixing. Prior to the Tevatron and LEP 2
they yielded the best limits on the Z ′ mass. The Z-pole experiments at LEP and
SLC, on the other hand, are mainly sensitive to Z −Z ′ mixing, which lowers the
mass of the Z relative to the SM prediction, and also modifies the Zf̄f vertices.

The effective four-Fermi Lagrangian for the WNC obtained from Eq. 9 is

− Leff =
4GF√

2

n+1∑
α=1

ρα

n+1∑
β=1

gβ
g1
UαβJ

µ
β

2

, (56)

where ρα ≡M2
W /(M

2
α cos2 θW ), Mα are the mass eigenvalues, U is the orthogonal

transformation defined in Eq. 17, and the currents are given in Eq. 10 (kinetic
mixing can be added). Specializing to the n = 1 case, this is

− Leff =
4GF√

2
(ρeffJ2

1 + 2wJ1J2 + yJ2
2 ), (57)

in the notation of (58,59), where

ρeff = ρ1 cos2 θ + ρ2 sin2 θ

w =
g2

g1
cos θ sin θ(ρ1 − ρ2) (58)

y =
(
g2

g1

)2

(ρ1 sin2 θ + ρ2 cos2 θ),



25

with the mixing angle θ defined in Eq. 22. For small ρ2 and θ, these are approx-
imated by

ρeff ∼ ρ1, w ∼ θ̂, y ∼ ρ̂2, (59)

where

θ̂ ≡ g2

g1
θ = Cρ̂2, ρ̂2 ≡

(
g2

g1

)2

ρ2. (60)

C is the Higgs-dependent mixing parameter of O(1) defined in Eq. 26. In the
same limit, from Eq. 24,

ρ1 ∼ ρ0(1 + ρoθ
2/ρ2) −−−→

ρ0=1
1 + θ2/ρ2 = 1 + C2ρ̂2, (61)

where ρ0, defined in Eq. 16, is 1 if there are only Higgs singlets and doublets.
At the Z pole, in addition to the shift in M1 below the SM value, any mixing

will affect the current
∑

β gβU1βJ
µ
β /g1 that couples to the Z1. For n = 1, the

vector and axial couplings Vi and Ai of the Z1 to fermion fi, which determine
the various Z pole asymmetries and partial widths (41), become

Vi = cos θg1
V (i) +

g2

g1
sin θg2

V (i) ∼ g1
V (i) + θ̂g2

V (i)

Ai = cos θg1
A(i) +

g2

g1
sin θg2

A(i) ∼ g1
A(i) + θ̂g2

A(i), (62)

where gαV,A(i) are defined in Eq. 10. It should be noted that the S, T , U formal-
ism (41) only describes propagator corrections and is not appropriate for most
Z ′ s.
4.1.2 Radiative Corrections The expressions for the electroweak cou-

plings in Section 4.1 and for MZ0 in Eq. 15 are valid at tree level only. One must
also apply full radiative corrections. In practice, since one is searching for very
small tree-level effects from the Z ′ it is a reasonable approximation to use the SM
radiative corrections (41) and neglect the effects of the Z ′ in loops4. However,
some care is necessary in the definitions of the renormalized parameters, e.g., by
using the MS rather than the on-shell definition of sin2 θW , to ensure that they
are not significantly affected by Z ′ effects (175,176).
4.1.3 Results The results from precision electroweak and other data are

shown for some specific models in Table 4 and Figure 1. One sees that the
precision data strongly constrain the Z−Z ′ mixing angle θ. They also give lower
limits on M2, but these are weaker than the Tevatron and LEP 2 limits. The
precision limit on the Zψ mass is low due to its weak coupling to the neutrino
and its purely axial coupling to the e−. There is no significant indication for a
Z ′ in the data (although the NuTeV anomaly could possibly be explained by a
Z ′ coupling to B − 3L (178)). The precision results are presented for two cases:
ρ0 free is for an arbitrary Higgs structure, while ρ0 = 1 is for Higgs doublets and
singlets with unrestricted charges (i.e., C is left free). There is little difference
between the limits obtained. The precision electroweak constraints are for the g2

value in Eq. 42 (except for the sequential model, which uses g2 = g1 ∼ 0.74); for
other values the limits on θ and M2 scale as g−1

2 and g2, respectively.
4The largest effects are from Z2 loops in µ decay, which modifiy slightly the relation between

the extracted Fermi constant and the W and Z masses (175). Z2 loops can also modify the
relation between µ and β decay and therefore affect the CKM universality tests (177). However,
these effects are small for the currently allowed masses.
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The stringent mixing limits from (mainly) the Z pole data lead to strong
indirect limits on the Z ′ mass for specific theoretical values of C, as can be seen
from the theoretical curves labeled 0, 1, 5,∞ in Figure 1 (59). For the χ and
LR models the label refers to the value of |x|2/(|νu|2 + |νd|2), where x/

√
2 is the

VEV of an extra Higgs doublet that is sometimes considered (transforming like
an L doublet for χ or like the δ0

L defined in Section 3.1.2 for the LR). The most
commonly studied cases are for x = 0, which yield MZχ > 1368 GeV,MZLR >
1673 GeV at 95% cl. For the ψ and η models, the label represents tan2 β ≡
|νu|2/|νd|2, with x = 0 assumed.

4.2 Constraints from Colliders

4.2.1 Hadron Colliders The primary discovery mode for a Z ′ at a hadron
collider is the Drell-Yan production of a dilepton resonance pp(p̄p) → Z ′ →
`+`−, where ` = e or µ (22, 181, 182, 27, 183, 184, 185, 99, 186, 187, 180, 41). Other
channels, such as Z ′ → jj where j = jet (187), t̄t (188), eµ (180), or τ+τ−,
are also possible. The forward-backward asymmetry for pp(p̄p) → `+`− (as a
function of rapidity, y, for pp) due to γ, Z, Z ′ interference below the Z ′ peak is
also important (22,189,183,180).

The cross section for hadrons A and B at CM energy
√
s to produce a Zα of

mass Mα at rapidity y is, in the narrow width approximation (22),

dσ

dy
=

4π2x1x2

3M3
α

∑
i

(fAqi (x1)fBq̄i (x2) + fAq̄i (x1)fBqi (x2))Γ(Zα → qiq̄i), (63)

where fA,Bqi,q̄i are the structure functions of quark (or antiquark) qi (q̄i) in hadrons
A or B, and the momentum fractions are

x1,2 = (Mα/
√
s)e±y. (64)

Neglecting mixing effects the decay width into fermion fi is

Γαfi ≡ Γ(Zα → fif̄i) =
g2
αCfiMα

24π
(
εαL(i)2 + εαR(i)2

)
, (65)

where the fermion mass has been neglected. Cfi is the color factor (1 for color
singlets, 3 for triplets). Formulas including fermion mass effects, decays into
bosons, Majorana fermions, etc., are given in (186).

To a good first approximation, Eq. 63 leads to the Z ′ total production cross
section (27)

σZ′ =
1
s
cZ′CK exp(−AMZ′√

s
), (66)

where C=600 (300) and A=32 (20) for pp (pp̄) collisions, and K ∼ 1.3 is from
higher order corrections. From (66), the predicted cross section falls exponentially
as a function of MZ′ . The details of the Z ′ model are collected in cZ′ , which
depends on MZ′ , the Z ′ couplings, and the masses of the decay products,

cZ′ ≡
4π2

3
ΓZ′
MZ′

(
Bu +

1
Cud

Bd

)
, (67)

where Cud = 2 (25), ΓZ′ is the total Z ′ width, and Bf = Γf/ΓZ′ is the branching
ratio into ff̄ . It is also useful to define

σfZ′ ≡ σZ′Bf = Nf/L, (68)
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where Nf is the number of produced ff̄ pairs for integrated luminosity L. More
detailed estimates for the Tevatron and LHC are given in (27, 184, 185, 99, 190),
including discussions of parton distribution functions, higher order effects, width
effects, resolutions, and backgrounds.

The production cross sections, widths, and branching ratios are considered in
detail in (22,181,186,191). For the E6 models, the total width is close to 0.01 MZ′

assuming decays into SM fermions only and g2 ∼
√

5/3g tan θW . However, ΓZ′
would be larger if superpartners and/or exotics are light enough to be produced in
the Z ′ decays, and could therefore be as large as 0.05 MZ′ in the E6 models (186).
The rates for a given channel, such as σeZ′ , decrease as Γ−1

Z′ in that case. On the
other hand, for smaller ΓZ′ but fixed branching ratios (e.g., from some of the
decoupled models described in Section 3.4.1) the leptonic rate would decrease
and the peak could be smeared out by detector resolution effects.

The Tevatron limits from the CDF and D0 collaborations (180,41) (dominated,
at the time of this writing, by the CDF e+e− search using 1.3 fb−1 of data) are
given in Table 4. Figure 2 shows the sensitivity of the Tevatron and LHC to
the E6 bosons as a function of θE6 for L = 1 or 3 fb−1 (Tevatron), and 100 or
300 fb−1 (LHC), requiring 10 events in the combined e+e− and µ+µ− channels.
The Tevatron sensitivity is in the 600-900 GeV range for decays into standard
model fermions only, but lower by as much as 200 GeV in the (extreme) case of
unsuppressed decays into sparticles and exotics. The LHC sensitivity is around
4-5 TeV, but can be lower by ∼ 1 TeV if the sparticle/exotic channels are open.
4.2.2 e+e− Colliders Z ′ s much heavier than the CM energy in e+e−

collisions above the Z pole would manifest themselves as new four-fermion in-
teractions analogous to Eq. 56, but with the α sum starting at 2. These would
interfere with the virtual γ and Z contributions for leptonic and hadronic final
states (see, e.g., (192)).

The ALEPH, DELPHI, L3, and OPAL collaborations at LEP2 have measured
production cross sections and angular distributions or asymmetries for e+e− →
e+e−, µ+µ−, τ+τ−, c̄c, and b̄b, as well as hadronic cross sections, at CM energies
up to ∼ 209 GeV (179). They saw no indication of new four-fermi interactions,
and the combined lower limits for typical models are given in Table 4 and Figure 1.

Similarly, a future linear collider would have sensitivity to MZ′ well above the
CM energy by interference with the γ and Z (193,194,195,196,197,187). Observ-
ables could include production cross sections, forward-backward (FB) asymme-
tries, polarization (LR) asymmetries, and mixed FB-LR asymmetries for e+e− →
e+e−, µ+µ−, τ+τ−, c̄c, b̄b, and t̄t; τ polarization; and cross sections and polariza-
tion asymmetries for q̄q. High luminosity, e− polarization, and efficient tagging
of heavy flavors are important. For example, the International Linear Collider
(ILC) with

√
s = 500 GeV, L = 1000 fb−1, and Pe− = 80% would have 5σ sensi-

tivity to the E6 and LR bosons in the range 2 − 5 TeV, increasing by ∼ 1 TeV
for
√
s = 1 TeV (187). There is some chance that a Z ′ could be observed first

at the ILC, e.g., if its mass were beyond the LHC range or its couplings weak,
in which case only M2/g2 could be determined for large M2. More likely, the
Z ′ would be discovered first and MZ′ determined independently at the LHC or
Tevatron. A GigaZ (Z-pole) option for the ILC would be extremely sensitive to
Z − Z ′ mixing (187).
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4.3 Diagnostics of Z ′ Couplings

Following the discovery of a resonance in the `+`− channels, the next step would
be to establish its spin-1 nature (as opposed, e.g., to a spin-0 Higgs resonance
or a spin-2 Kaluza-Klein graviton excitation). This can be done by the angular
distribution in the resonance rest frame, which for spin-1 is

dσfZ′

d cos θ∗
∝ 3

8
(1 + cos2 θ∗) +AfFB cos θ∗, (69)

where θ∗ is the angle between the incident quark or lepton and fermion f . Of
course, for a hadron collider one does not know which hadron is the source of the
q and which the q̄ on an event by event basis, but the ambiguity washes out in
the determination of the 1 + cos2 θ∗ distribution characteristic of spin 1 (22,183).
The spin can also be probed in e+e− by polarization asymmetries (187).

One would next want to determine the chiral couplings to the quarks, leptons,
and other particles in order to discriminate between models. (The gauge coupling
g2 can be fixed to the value in Eq. 42, or alternatively can be taken as a free
parameter if the charges are normalized by some convention.) This should be
possible for masses up to ∼ 2− 2.5 TeV at the LHC assuming typical couplings,
but for higher masses there are too few events for meaningful diagnostics.

In the main LHC production channels, pp→ Z ′ → `+`− (` = e, µ), one would
be able to measure the mass MZ′ , the width ΓZ′ and the leptonic cross section
σ`Z′ = σZ′B`. By itself, σ`Z′ is not a useful diagnostic for the Z ′ couplings to
quarks and leptons: while σZ′ can be calculated to within a few percent for
given Z ′ couplings, the branching ratio into leptons, B`, depends strongly on the
contribution of exotics and sparticles to ΓZ′ (186). However, σ`Z′ would be a useful
indirect probe for the existence of the exotics or superpartners. Furthermore, the
product σ`Z′ΓZ′ = σZ′Γ` does probe the absolute magnitude of the quark and
lepton couplings.

The most useful diagnostics involve the relative strengths of Z ′ couplings to
ordinary quarks and leptons. The forward-backward asymmetry as a function
of the Z ′ rapidity, AfFB(y) (22), avoids the q̄q ambiguity in Eq. 69. For AB →
Z ′ → f̄f , define θCM as the the angle of fermion f with respect to the direction
of hadron A in the Z ′ rest frame, and let F (B) be the cross section for fixed
rapidity y with cos θCM > 0 (< 0). Then, AfFB(y) ≡ (F −B)/(F +B), with

F ±B ∼
[

4/3
1

]∑
i

(
fAqi (x1)fBq̄i (x2)± fAq̄i (x1)fBqi (x2)

)
×

(
εL(qi)2 ± εR(qi)2

) (
εL(f)2 ± εR(f)2

)
. (70)

Clearly, AfFB(y) vanishes for pp at y = 0, but can be nonzero at large y where
there is more likely a valence q from the first proton and sea q̄ from the other.
The leptonic forward-backward asymmetry is sensitive to a combination of quark
and lepton chiral couplings and is a powerful discriminant between models (22).

There are a number of additional probes. The ratio of cross sections in different
rapidity bins (198) gives information on the relative u and d couplings. Possible
observables in other two-fermion final state channels include the polarization of
produced τ ’s (199) and the pp → Z ′ → jj cross section (200, 187). There are
no current plans for polarization at the LHC, but polarization asymmetries at a
future or upgraded hadron collider would provide another useful diagnostic (201).
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In four-fermion final state channels the rare decays Z ′ → V f1f̄2, where V = W
or Z is radiated from the Z ′ decay products, have a double logarithmic enhance-
ment. In particular, Z ′ →W`ν` (with W → hadrons and an `ν` transverse mass
> 90 GeV to separate from SM background) may be observable and projects out
the left-chiral lepton couplings (202, 203, 204). Similarly, the associated produc-
tions pp→ Z ′V with V = (Z,W ) (205) and V = γ (206) could yield information
on the quark chiral couplings.

Finally, decays into two bosons, such as Z ′ → W+W−, Zh, or W±H∓, can
occur only by Z −Z ′ mixing or with amplitudes related to the mixing. However,
this suppression may be compensated for the longitudinal modes of the W or
Z by the large polarization vectors, with components scaling as MZ′/MW (207,
208, 209). For example, Γ(Z ′ → W+W−) ∼ |θ|2, which appears to be hopelessly
small to observe. However, the enhancement factor is ∼ (MZ′/MW )4. Thus,
from Eq. 26, these factors compensate, leaving a possibly observable rate that in
principle could give information on the Higgs charges.

Global studies of the possible LHC diagnostic possibilities for determining ra-
tios of chiral charges in a model independent way and discriminating models
are given in (25, 198). The complementarity of LHC and ILC observations is
especially emphasized in (193,25,210,187).

5 Implications

5.1 The µ Problem and Extended Higgs/Neutralino Sectors

5.1.1 The µ Problem As described in Section 2.5.3, the µ problem of the
MSSM can be solved in singlet extended models in which a symmetry forbids an
elementary µ term, but allows a dynamical µeff = λS〈S〉. There are a number
of realizations of this mechanism (see (74, 211) for reviews). The best known is
the next to minimal model (NMSSM), in which a discrete Z3 symmetry forbids
µ but allows the cubic terms λSSHuHd and κS3/3 in the superpotential (212).
The original form of the NMSSM suffers from cosmological domain wall problems
because of the discrete symmetry. This can be remedied in more sophisticated
forms involving an R symmetry (74). A variation on that approach yields the
new minimal model (nMSSM), in which the cubic term and its soft analog are
replaced by tadpole terms linear in S with sufficiently small coefficients (213). A
U(1)′ symmetry, which is perhaps more likely to emerge from a string construc-
tion, is another possibility (31, 72, 73). This avoids the domain wall problem by
embedding the discrete symmetry of the NMSSM into a continuous one.
5.1.2 Extended Higgs Sector Conventional U(1)′ models necessarily in-
volve extended Higgs sectors associated with the SM singlet fields whose VEVs
break the U(1)′ symmetry. Especially interesting in this respect are those su-
persymmetric models involving a dynamical µeff = λS〈S〉. If one ignores Higgs
sector CP violation5, then there will be an additional Higgs scalar associated
with S, that can mix with the two MSSM scalars from H0

u,d. (There is also an
additional pseudoscalar in the models involving a discrete symmetry.) Since the
S does not couple directly to the SM fermions or gauge bosons, the LEP lower
limits on the Higgs mass (mH > 114.4 GeV for the SM Higgs, and somewhat
weaker in the MSSM) are weakened if the lightest Higgs has a significant singlet

5Loop effects may generate significant CP effects, especially for the heavier Higgs states (214).
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component (215). Conversely, the theoretical upper limit on the lightest Higgs is
also relaxed, from ∼ 130 GeV in the MSSM to around 170 GeV in the simplest
U(1)′ model, due to the new F and D term contributions to the potential in
Eq. 52. (One must include the loop corrections to these estimates (215).) These
relaxed limits allow lower values for tanβ ≡ νu/νd in the U(1)′ models than are
favored for the MSSM.

The UMSSM is the U(1)′ with a single S, with the potential in Eq. 52. In the
decoupling limit, 〈S〉 → ∞ with µeff fixed, the UMSSM reduces to the MSSM.
Existing constraints favor this limit (unless the Z ′ is leptophobic, with small
Z − Z ′ mixing due to a cancellation of the two terms in ∆2 in Eq. 20). For
large 〈S〉 the extra Higgs is heavy and mainly singlet (215), so the Higgs sector is
MSSM-like. However, more general U(1)′ models such as the secluded model in
Section 3.5.3, as well as other models such as the nMSSM, can yield significant
doublet-singlet mixing, light singlet-dominated states, etc (89,216). (In fact, the
secluded model reduces to the nMSSM in an appropriate limit (215).) This may
yield such nonstandard collider signatures as light weakly coupled Higgs, multiple
Higgs with reduced couplings, and invisible decays into light neutralinos (217).
5.1.3 Extended Neutralino Sector The neutralino sector of the MSSM
(the bino, B̃, and the wino, W̃ 0, with soft masses MB̃,W̃ ; and two neutral Hig-
gsinos H̃0

u,d) is extended in U(1)′ models by one or more singlinos, S̃, and by the
Z ′-gaugino, Z̃ ′, with soft mass MZ̃′ (218,219,220,221,222). (There could also be
soft mass or kinetic B̃ − Z̃ ′ mixing terms.)

In the (B̃, W̃ 0, H̃0
d , H̃

0
u, S̃, Z̃

′) basis, the mass matrix for the six neutralinos in
the UMSSM is

Mχ0 =


MB̃ 0 −g′νd/2 g′νu/2 0 0

0 MW̃ gνd/2 −gνu/2 0 0
−g′νd/2 gνd/2 0 −µeff −µeffνu/s g2Qdνd
g′νu/2 −gνu/2 −µeff 0 −µeffνd/s g2Quνu

0 0 −µeffνu/s −µeffνd/s 0 g2QSs
0 0 g2Qdνd g2Quνu g2QSs MZ̃′

 .

(71)
In the decoupling limit with g2QSs � MZ̃′ the singlino and the Z ′-gaugino will
combine to form an approximately Dirac fermion with mass g2QSs ∼ MZ′ and
little mixing with the four MSSM neutralinos. For large MZ̃′ � g2QSs, on the
other hand, there will be a heavy Majorana Z̃ ′, and a much lighter singlino with
a seesaw type mass ∼ −M2

Z′/MZ̃′ . For smaller s there can be significant mixing
with the MSSM neutralinos. One can easily extend to secluded models (89,216),
models with multiple U(1)′ s (219), or singlet extended models with discrete sym-
metries (74, 211, 220). In many of these cases there are light singlino-dominated
states (which can be the lightest supersymmetric particle (LSP)) and/or signifi-
cant mixing effects. These can lead to a variety of collider signatures very differ-
ent from the MSSM (221). For example, in some cases there are four MSSM-like
neutralinos with production and cascades similar to the MSSM. However, the
lightest of these may then undergo an additional decay to a singlino LSP, ac-
companied e.g., by an on-shell Z or Higgs. Enhanced rates for the decay of
chargino-neutralino pairs to three or more leptons are possible. It is also possible
for the lightest Higgs to decay invisibly to two light singlinos. Cold dark matter
implications are described in Section 5.7.
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5.2 Exotics

Almost all U(1)′ models require the addition of new chiral exotic states to cancel
anomalies (Section 2.3). Precision electroweak constraints favor that these are
quasi-chiral, i.e., vector pairs under the SM but chiral under U(1)′. Examples are
the SU(2)-singlet D,Dc quarks with charge −1/3 in the E6 model (Table 2); the
SU(2) doublet pairs in E6 which may be interpreted either as additional Higgs
pairs Hu.d or as exotic lepton doublets; or SM singlets. Realistic models must
provide means of generating masses for such exotics, e.g., by coupling to chiral
(or nonchiral) singlets which acquire VEVs, such as SDDc, and also for their
decays.

Consider the example of the exotic D quarks, which can be pair-produced by
QCD processes at a hadron collider, and their scalar supersymmetric partners
D̃, produced with an order of magnitude smaller cross section. (The rates are
smaller for exotic leptons.) Once produced, there are three major decay possibil-
ities (103):

• The decay may be D → uiW
−, D → diZ, or D → diH

0, if driven by mixing
with a light charge −1/3 quark (223, 224). The current limit is mD & 200
GeV (224), which should be improved to ∼ 1 TeV at the LHC. However,
such mixing is forbidden in the supersymmetric E6 model if R-parity is
conserved.

• One may have D̃ → jj if there is a small diquark operator such as ucdcDc,
or D̃ → j` for a leptoquark operator like LQDc. (They cannot both
be present because of proton decay.) Such operators do not by themselves
violateR parity (R = +1 for the scalar), and therefore allow a stable lightest
supersymmetric particle. They are strongly constrained by the KL − KS

mass difference and by µ− e conversion, but may still be significant (103).
If the scalar D̃ is heavier than the fermion, then it may decay resonantly
into the fermion pair, or into a D and neutralino (or gluino). The lighter
fermion D can decay into a neutralino and nonresonant fermion pair via a
virtual D̃ or via a real or virtual squark or slepton. A heavier fermion will
usually decay into an on-shell D̃ and a neutralino (or gluino), with the D̃
decaying to fermions. The signals from these decays, especially for a heavier
scalar, may be difficult to extract from normal SUSY cascades, especially for
diquarks. However, there are some possibilities based on missing transverse
energy, lepton multiplicities and pT , etc (103).

• They may be stable at the renormalizable level due to the U(1)′, or to an
accidental or other symmetry, so that they hadronize and escape from or
stop in the detector (103), with signatures (225) somewhat similar to the
quasi-stable gluino expected in split supersymmetry (226). They could then
decay by higher-dimensional operators on a time scale of . 10−1 − 100 s,
short enough to avoid cosmological problems (227). These operators could
allow direct decays to SM particles, or they could involve SM singlets with
VEVs which could induce tiny mixings with ordinary quarks.

Exotics carrying SM charges significantly modify the running of the SM cou-
plings, and therefore can affect gauge unification unless, e.g., they occur in SU(5)-
type multiplets. Examples of U(1)′ constructions which preserve the MSSM run-
ning at tree level are described in Sections 3.1.3 and 3.2.
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5.3 The Z ′ as a Factory

The decays of a Z ′ could serve as an efficient source of other particles if it is
sufficiently massive. This has been explored in detail for slepton production,
pp→ Z ′ → ˜̀̀̃ ∗, with ˜̀→ `+ LSP, assuming that MZ′ is already known from the
conventional `+`− channel (228). This can greatly extend the discovery reach
of the ˜̀ and may give information on the identity of the LSP. Decays of the Z ′

could also be a useful production mechanism for pairs of exotics (125) or heavy
Majorana neutrinos (127,128). The latter could lead to the interesting signature
of like sign leptons + jets. The total width ΓZ′ , in combination with other
constraints on the quark and lepton charges, would also give some information
on the exotic/sparticle decays (191,186).

5.4 Flavor Changing Neutral Currents

In Section 2 it was implicitly assumed that the U(1)′ charges were family univer-
sal. That implies that the Z ′ couplings are unaffected by fermion mixings and
remain diagonal (the GIM mechanism). However, many models involve nonuni-
versal charges, as described in Section 3.4.3. Let us rewrite the U(1)′ current in
Eq. 10 as

Jµα = f̄0
Lγ

µεαfLf
0
L + f̄0

Rγ
µεαfRf

0
R, (72)

where f0
L is a column vector of weak-eigenstate left chiral fermions of a given

type (i.e., u0
L, d

0
L, e

0
L, or ν0

L), and similarly for f0
R. The εαf are diagonal matrices

of U(1)′ charges. The f0
L,R are related to the mass eigenstates fL,R by

f0
L = V f†

L fL, f0
R = V f†

R fR, (73)

where V f
L,R are unitary. In particular, the CKM and PMNS matrices are given

by V u
L V

d†
L and V ν

LV
e†
L , respectively. In the mass basis,

Jµα = f̄Lγ
µBα

fLfL + f̄Rγ
µBα

fRfR, (74)

where
Bα
fL ≡ V

f
L ε

α
fLV

f†
L , Bα

fR ≡ V
f
R ε

α
fRV

f†
R . (75)

For family universal charges, εfL,R are proportional to the identity, and BfL,R =
εfL,R. However, for the nonuniversal case, BfL,R will in general be nondiagonal.

As a simple two family example, if ε =
(

0 0
0 1

)
and V is a rotation of the same

form as Eq. 22 then

Jµ = sin2 θf̄1γ
µf1 + cos2 θf̄2γ

µf2 + sin θ cos θ(f̄1γ
µf2 + f̄1γ

µf2). (76)

The formalism for FCNC mediated by Z ′, and also by off-diagonal Z couplings
induced by Z − Z ′ mixing, was developed in (229), and limits were obtained for
a number of tree and loop level mixings and decays. The limits from K0 − K̄0

mixing (including CP violating effects) and from µ−e conversion in muonic atoms
are sufficiently strong to exclude significant nonuniversal effects for the first two
families for a TeV-scale Z ′ with electroweak couplings. However, nonuniversal
couplings for the third family are still possible and could contribute (229, 230,
231, 232, 233, 234, 235, 236, 237, 238) to processes such as BB̄ and DD̄ mixing,
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B → µ+µ−, or b → sss̄ (such as in B → φK). Since the Z ′ effects are at tree
level, they may be important even for small couplings since they are competing
with SM or MSSM loop effects. The possible anomaly observed in the Z → b̄b
forward-backward asymmetry (41) could possibly be a (flavor diagonal) result of
a nonuniversal Z ′ coupling (173). Collider processes such as single top production
could possibly be observable as well (239).

The nonuniversal couplings could also be relevant to loop effects, such as b→ sγ
or µ → eγ, or intrinsic magnetic or electric dipole moments. One interpretation
of the possible anomaly (41) suggested by the BNL experiment for the anomalous
magnetic moment of the µ involves the vertex diagram with a Z ′ exchange (see,
e.g., (238)). The flavor-diagonal diagram with an internal µ is too small to be
relevant (unless MZ′ ∼ 100 GeV or the couplings are large). However, an internal
τ enhances the effect by mτ/mµ, and the anomaly could be accounted for by a
TeV scale Z ′ with large µ− τ mixing.

Mixing between the ordinary and exotic fermions can also lead to FCNC ef-
fects (240). For example, a small dc−Dc mixing in the E6 model of Table 2 would
induce off diagonal couplings of the Z0

2 to the light and heavy mass eigenstate,
while a d−D mixing (i.e., between an SU(2) doublet and singlet) would generate
similar effects for the ordinary Z0. Off-diagonal vertices between the light mass
eigenstates, such as Z0

αb̄s, would be induced as second order effects.

5.5 Supersymmetry Breaking, Z ′ Mediation, the Hidden Sector

U(1)′ s have many possible implications for supersymmetry breaking and medi-
ation, and for communication with a hidden sector. For example, one limit of
the single S scenario of Section 3.5.2 requires large (TeV scale) soft masses in the
Higgs sector, suggesting the possibility of heavy sparticles as well (241).

Another implication is the U(1)′ D term contribution to the scalar poten-
tial (242),

VD =
1
2
D2 ≡ 1

2

(
−g2

∑
i

Qi|φi|2
)2

. (77)

VD of course contributes to the minimization conditions and Higgs sector masses.
Assuming a value Dmin 6= 0 for D at the minimum, it gives a contribution to the
masses m2

i of the squarks, sleptons, and exotic scalars

∆m2
i = (−Dmin)(g2Qi). (78)

For a single S field, one has −Dmin = g2(Qu|νu|2 + Qd|νd|2 + QS |s|2)/2 in the
notation of Section 2.2. ∆m2

i can be of either sign, and must be added to other
supersymmetric and soft contributions. When the U(1)′ scale is large, there is a
danger of overall negative mass-squares which de-stabilize the vacuum. However,
in that case there is the possibility of breaking along a D flat direction in which
V min
D is small, as in the secluded models (89). Positive D term contributions to

the slepton masses have been suggested as a means of compensating the negative
ones from anomaly mediated supersymmetry breaking (243, 244). The D term
quartic interactions also contribute to the RGE equations for the soft masses (see,
e.g., (73,90)).
U(1)′ s have been invoked in many models of supersymmetry breaking or me-

diation. For example, many models of gauge mediation involve a U(1)′ which
may help transmit the breaking by loop effects and/or D terms in the hidden or
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ordinary sectors (245,109,94,95,246). The Fayet-Iliopoulos terms (Section 3.6.3)
associated with anomalous U(1)′ s in string constructions may also help trigger
and transmit supersymmetry breaking (247,248).

In many string constructions particles in both the ordinary and hidden sector
may carry U(1)′ charges, allowing for the possibility of Z ′ mediation (105). The
simplest case is that the U(1)′ gauge symmetry is not broken in the hidden sector,
but the Z ′ gaugino acquires a mass from the SUSY breaking. The Z ′ − Z̃ ′ mass
difference induces ordinary sector scalar masses at one loop, and SM gaugino
masses at two loops. Requiring the latter to be in the range 102 − 103 GeV
implies MZ̃′ & 103 TeV (for electroweak couplings), with the sparticles, exotics,
and Z ′ around 10−100 TeV and the electroweak scale obtained by a fine-tuning,
i.e., a version of split supersymmetry (226). String embeddings of this scenario
are addressed in (156). It can also be combined with other mediation scenarios,
allowing a lower Z ′ scale (249). A Z ′ communicating with a hidden sector could
also allow the production and decays into SM particles of relatively light hidden
valley particles (250).

5.6 Neutrino Mass

The seesaw model (see, e.g., (251)) leads to a small Majorana mass mν ∼
−m2

D/Mνc for the ordinary doublet neutrinos ν, where mD is a Dirac mass (gen-
erated by the VEV of a Higgs doublet), and Mνc � mD is the Majorana mass of
the heavy singlet νc,

− Lν = mDν̄LνR +
1
2
Mνc ν̄

c
LνR + h.c., (79)

where νR is the conjugate of νcL. For mD ∼ 100 GeV and Mνc ∼ 1014 GeV one
obtains |mν | in the observed 0.1 eV range. However, if the νc is charged under a
U(1)′ then Mνc cannot be much larger than the U(1)′ scale. One possibility for a
TeV scale Z ′ is that the νc is neutral, as in the N model (83,84,85,86). Then, a
conventional seesaw (83,252,85,86) and leptogenesis (253) scenario can be possible
if a large Mνc can be generated. For other models with TeV scale MZ′ one must
invoke an alternative to the seesaw. For example, small Majorana masses can be
generated using the double seesaw mechanism (involving an additional power of
M−1
νc ), or by invoking a Higgs triplet (85,251).
Another possibility, which can lead to either small Dirac or Majorana masses,

involves higher-dimensional operators (HDO) (143,254,255,256,257,85,258,259).
For example, a superpotential operator W = SLHuν

c/M could generate a small
Dirac mass in the correct range for 〈S〉 ∼ 106 GeV and M ∼ 1018 GeV. Such
a VEV can easily occur in intermediate scale models (143, 254) or in the Z ′

mediation scenario (105). Higher powers could occur for a larger 〈S〉 or smaller
M , associated, e.g., with an anomalous U(1)′ (257). Non-holomorphic (wrong
Higgs) terms (see Section 2.5.2) can also lead to naturally small Dirac masses,
suppressed by the ratio of the SUSY breaking and mediation scales (259). In
some cases, a Z ′-gaugino is needed to generate a fermion mass at loop level
from a non-holomorphic soft term. In all of these mechanisms, some low energy
symmetry such as a U(1)′ must forbid a renormalizable level Dirac mass term
W = LHuν

c, while allowing the HDO. Discrete gauge symmetries (i.e., remnants
of a gauge symmetry broken at a high scale), may also help restrict the allowed
operators (260).
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Some mechanisms (83, 254) also allow the generation of light sterile neutrino
masses and ordinary-sterile mixing, as suggested by the LSND experiment.

The right handed components of light Dirac neutrinos could upset the success-
ful predictions of big bang nucleosynthesis if they were present in sufficient num-
bers. Mass and Yukawa coupling effects are too small to be dangerous. However,
couplings of the νc to a TeV-scale Z ′ could have kept them in equilibrium until
relatively late (261). A detailed estimate (84) found that too much 4He would
have been produced for light Dirac neutrinos for most of the E6 models unless
MZ′ & 1−3 TeV. Similar constraints follow from supernova cooling (262). These
limits disappear, however, for couplings close to the N model. This is especially
relevant for a parameter range of the generalized E6 model (with two U(1)′ s)
in which the ZN is much lighter than the orthogonal boson, but nevertheless no
Majorana masses are allowed (85).

5.7 Cosmology

5.7.1 Cold Dark Matter U(1)′ models (263, 264, 265, 266, 267, 268, 269,
270), as well as other singlet extended models with a dynamical µ term (74,211,
265,271), have many implications for cold dark matter (CDM). For example, the
extended neutralino sector in Eq. 71 allows the possibility of a light singlino as
the LSP (263,264,265,266,271), with efficient annihilation into a light Z ′ or into
the Z (via small admixtures with the Higgsinos). More generally, the LSP may
contain admixtures of S̃ or Z̃ ′ with the MSSM neutralinos, or allow a modified
MSSM composition for the LSP. The models also have enlarged Higgs sectors and
different allowed ranges, extending the possible mechanisms for Higgs-mediated
LSP annihilation. Most of the interesting cases should be observable in direct
detection experiments (265).

There are other LSP candidates in U(1)′ models. For example, the scalar
partners ν̃c of the singlet neutrinos become viable thermal CDM candidates due
to the possibility of annihilation through the Z ′ (267). Other possibilities in-
clude a neutral exotic particle or multiple stable particles (268), a heavy Dirac
neutrino (269), or a semi-secluded weak sector (270) coupled via a Z ′.
5.7.2 Electroweak Baryogenesis The seesaw model of neutrino mass

allows the possibility of explaining the observed baryon asymmetry by leptoge-
nesis, i.e., the decays of the heavy Majorana neutrino generate a small lepton
asymmetry, which is partially converted to a baryon asymmetry by the elec-
troweak sphaleron process (251). As discussed in Section 5.6, however, an addi-
tional U(1)′ symmetry often forbids the seesaw model. Some of the alternatives
discussed there allow other forms of leptogenesis (272).

However, the U(1)′ (273,274,275) and other singlet extended models (211,271,
276) open up the possibility of a completely different mechanism, electroweak
baryogenesis. In this scenario, the interactions of particles with the expanding
bubble wall from a strongly first order electroweak phase transition lead to a
CP asymmetry, which is then converted to a baryon asymmetry by sphaleron
processes. However, the SM does not have a strong first order transition or
sufficient CP violation; the MSSM has only a small parameter range involving a
light stop for the transition, and there is tension between the CP violation needed
and electric dipole moment (EDM) constraints (277). In the extended models,
however, there is a tree-level cubic scalar interaction (the λSASSH0

uH
0
d term in

Eq. 52) which can easily lead to the needed strong first order transition. There are
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also possible new sources of tree-level CP violation in the Higgs sector (273,275),
which can contribute to the baryon asymmetry but have negligible effect on
EDMs.
5.7.3 Cosmic Strings A broken global or gauge U(1)′ can lead to cosmic

strings, which are allowed cosmologically for a wide range of parameters and
which could have interesting implications for gravitational waves, dark matter,
particle emission, and gravitational lensing. For a recent discussion, with empha-
sis on breaking a supersymmetric U(1)′ along an almost flat direction, see (278).

6 Conclusions and Outlook

A new U(1)′ gauge symmetry is one of the best motivated extensions of the stan-
dard model. For example, U(1)′ s occur frequently in superstring constructions.
If there is supersymmetry at the TeV scale, then both the electroweak and Z ′

scales are usually set by the scale of soft supersymmetry, so it is natural to expect
MZ′ in the TeV range. (One exception is when the U(1)′ breaking occurs along an
approximately flat direction, in which case a large breaking scale could be associ-
ated with fermion mass hierarchies generated by higher-dimensional operators.)
Similarly, TeV-scale U(1)′ s (or Kaluza-Klein excitations of the photon and Z)
frequently occur in models of dynamical symmetry breaking, Little Higgs mod-
els, and models with TeV−1-scale extra dimensions. Other constructions, such as
non-supersymmetric grand unified theories larger than SU(5), also lead to extra
U(1)′ s, but in these cases there is no particular reason to expect breaking at the
TeV scale (and breaking below the GUT may lead to rapid proton decay).

The observation of a Z ′ would have consequences far beyond just the existence
of a new gauge boson. Anomaly cancellation would imply the existence of new
fermions. These could just be right-handed neutrinos, but usually there are
additional particles with exotic electroweak quantum numbers. There must also
be at least one new SM singlet scalar whose VEV breaks the U(1)′ symmetry.
This scalar could mix with the Higgs doublet(s) and significantly alter the collider
phenomenology. The Z ′ couplings could be family nonuniversal, allowing new
tree-level contributions, e.g., to t, b, and τ decays.

In the supersymmetric case the U(1)′ could solve the µ problem by replacing
µ by a dynamical variable linked to the U(1)′ breaking, and the allowed MSSM
parameter range would be extended. The singlets and exotics would be parts of
chiral supermultiplets, and there would be extended neutralino sectors associated
with the new singlino and gaugino, modifying the collider physics and cold dark
matter possibilities. Gauge unification could be maintained if the exotics fell
into SU(5)-type multiplets. The U(1)′ symmetry would also constrain the possi-
bilities for neutrino mass and might be related to proton stability and R-parity
conservation. A Z ′ might also couple to a hidden sector and could play a role
in supersymmetry breaking or mediation. Finally, a dynamical µ would allow a
strong first order electroweak phase transition and new sources of CP violation
in the Higgs sector, making electroweak baryogenesis more likely than in the SM
or the MSSM, with the ingredients observable in the laboratory.

There are large classes of Z ′ models, distinguished by the chiral charges of
the quarks, leptons, and Higgs fields, as well as the Higgs and exotic spectrum,
gauge coupling, Z ′ mass, and possible mass and kinetic mixing. In string con-
structions, for example, U(1)′ s that do not descend through SO(10) or left-right
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symmetry can have seemingly random charges. There is no simple classification
or parametrization that takes into account all of the possibilities. One (model in-
dependent) approach, valid for family universality, is to take a conventional value
for the new gauge coupling, and regard the charges of the left-handed quarks
(QL), leptons (LL), and antiparticles ucL, d

c
L, and e+

L , as well as MZ′ and the
mixing angle θ as free parameters relevant to experimental searches. However,
7 parameters are too many for most purposes, so one must resort to specific
models or lower-dimensional parametrizations to illustrate the possibilities. A
recommended set are those summarized in Tables 1, 2, and 3.

Table 1 lists the left right (LR) model, which is a one-parameter (not counting
the Z ′ mass and mixing) set of models based on various forms of SO(10) and
left-right symmetry, and a two parameter generalization motivated by kinetic
mixing. It requires no exotics other than νcL. However, the supersymmetric
version requires non-chiral Higgs doublets and (probably) vector pairs of SM
singlets, and does not solve the µ problem.

Table 2 lists popular E6-motivated models. A whole class of interesting models
involves one free parameter, θE6 , or a two parameter generalization with kinetic
mixing (or a third parameter if the gauge coupling is varied). These models illus-
trate typical exotics, and (with the exception of the χ model) the supersymmetric
version involves a dynamical µ term. However, supersymmetric gauge unification
requires an additional vector pair of Higgs-like doublets.

The models in Table 3 are examples of supersymmetric models with a dynam-
ical µ that are consistent with gauge unification without additional vector pairs.
Three parameters, including the gauge coupling, are relevant to the non-exotic
sector.

If there is a Z ′ with typical electroweak scale couplings to the ordinary fermions,
it should be readily observable at the LHC for masses up to ∼ 4−5 TeV, or at the
Tevatron for masses up to ∼ 600− 900 GeV. Significant diagnostic probes of the
Z ′ couplings would be possible up to ∼ 2− 2.5 TeV. A future ILC would extend
the range somewhat, and would provide complementary diagnostics. Within the
context of supersymmetry, the observation of a Z ′ could completely alter the
paradigm of having just the MSSM at the TeV scale, with a desert up to a scale
of grand unification or heavy Majorana neutrino masses, and would suggest a
whole range of new laboratory and cosmological consequences. In the nonsuper-
symmetric case, a Z ′ might be one of the first experimental manifestations of a
new TeV scale sector of physics.
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Table 1: Charges of the left-chiral components of the fermions in the models
based on T3R and TBL = (B − L)/2. The charges are normalized so that g2 =√

5
3g tan θW . QLR is a special case of QY BL for b2z(1 + z) = −3/5. α and (b, z)

are free parameters, with α = 1.53 for left-right symmetry and α ∼ 0.7− 0.9 for
most SO(10) models.

T3R TBL Y
√

5
3Q

LR 1
bQ

Y BL

Q 0 1
6

1
6 − 1

6α
1
6(z + 1)

ucL −1
2 −1

6 −2
3 −α

2 + 1
6α −2

3z −
1
6

dcL
1
2 −1

6
1
3

α
2 + 1

6α
1
3z −

1
6

LL 0 −1
2 −1

2
1

2α −1
2(z + 1)

e+
L

1
2

1
2 1 α

2 −
1

2α z + 1
2

νcL −1
2

1
2 0 −α

2 −
1

2α
1
2

Table 2: Decomposition of the E6 fundamental representation of left-handed
fermions 27 under SO(10) and SU(5), and their U(1)χ, U(1)ψ, U(1)η, inert
U(1)I , neutral-N U(1)N , and secluded sector U(1)S charges. A general model in
this class has charge Q2 = cos θE6Qχ + sin θE6Qψ − εY , where ε can result from

kinetic mixing, and coupling g2 =
√

5
3g tan θWλ

1/2
g , where λg is usually of O(1).

SO(10) SU(5) 2
√

10Qχ 2
√

6Qψ 2
√

15Qη 2QI 2
√

10QN 2
√

15QS
16 10 (u, d, uc, e+) −1 1 −2 0 1 −1/2

5∗ (dc, ν, e−) 3 1 1 −1 2 4
νc −5 1 −5 1 0 −5

10 5 (D,Hu) 2 −2 4 0 −2 1
5∗ (Dc, Hd) −2 −2 1 1 −3 −7/2

1 1 S 0 4 −5 −1 5 5/2

Table 3: Examples of supersymmetric models consistent with minimal SM gauge
unification. n55∗ is the number of pairs of 5 + 5∗. QS is taken to be 1. The free
parameters are QHu ≡ x,QQ ≡ y,QD ≡ z (which only affects the exotics), and
the gauge coupling g2. Kinetic mixing can be added. The Qψ̃ model is a special
case with axial charges and n55∗ = 2. Additional SM singlets are not displayed.
The νc charge allows a Dirac ν mass term.

Q55∗ Qψ̃ Q55∗ Qψ̃
Q y 1/4 Hu x −1/2
uc −x− y 1/4 Hd −1− x −1/2
dc 1 + x− y 1/4 SD 3/n55∗ 3/2
L 1− 3y 1/4 Di z −3/4
e+ x+ 3y 1/4 Dc

i −3/n55∗ − z −3/4
νc −1− x+ 3y 1/4 SL 2/n55∗ 1
S 1 1 Li

5−n55∗
4n55∗

+ x+ 3y + 3z/2 −1/2
Lci −2/n55∗ −QLi −1/2
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Table 4: 95% cl lower limits on various extra Z ′ gauge boson masses (GeV)
and 90% cl ranges for the mixing sin θ from precision electroweak data (columns
2-4), Tevatron searches (assuming decays into SM particles only), and LEP 2.
From (172,179,180,41).

ρ0 free ρ0 = 1 sin θ (ρ0 = 1) Tevatron LEP 2
χ 551 545 (−0.0020)− (+0.0015) 822 673
ψ 151 146 (−0.0013)− (+0.0024) 822 481
η 379 365 (−0.0062)− (+0.0011) 891 434
LR 570 564 (−0.0009)− (+0.0017) 630 804

sequential 822 809 (−0.0041)− (+0.0003) 923 1787
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Figure 1: Limits on the Z ′ mass M2 and the Z −Z ′ mixing angle θ for the χ, ψ,
η, and LR (α = 1.53) models. The solid (dashed) contours are 90% cl exclusions
from precision electroweak data for ρ0 = 1 (ρ0 = free). x is the best fit. The
horizontal solid line is the 95% cl Tevatron lower limit, assuming decays into SM
particles only. The horizontal dotted line is the 95% cl lower limit from LEP 2.
The contours marked 0, 1, 5,∞ are for various theoretical relations between the
mass and mixing and are defined in the text. Updated from (172).
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Figure 2: Discovery limits for an E6 Z
′ as a function of θ ≡ θE6 corresponding to

a total of 10 e+e− or µ+µ− events using σZ′ from Eq. 66. In each panel the top
two curves assume decays into SM fermions only, while the bottom two assume
that decays into exotics and sparticles are unsuppressed. The different shapes of
the Tevatron and LHC curves is because the u quark dominates at the Tevatron,
while the u and d are more comparable at the LHC. From (186).
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