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Abstract

This note describes the performance of the calorimeter clustering algoritbexisfor
ATLAS, and which provide inputs for particle identification. ATLAS uses tprincipal
algorithms. The first is the “sliding-window” algorithm, which clusters calorimetls
within fixed-size rectangles; results from this are used for electrortpphand tau lepton
identification. The second is the “topological” algorithm, which clusters togetbighbor-
ing cells, as long as the signal in the cells is significant compared to noisereShis of
this second algorithm are further used for jet and missing transversgyameonstruction.

This note first summarizes the steps of the calorimeter reconstruction saftiaie-
tailed description of the two clustering algorithms is then given. A last sectiomsuizes
their performance.

The results presented in this note are obtained with the ATRASENA software re-
leases 12 and 13.






Introduction

Calorimeters are crucial detectors at the LHC. They provide accuratsume@aents of the energies
and positions of electrons, photons, and jets as well as of the missingdra@snergy. Calorimetric
measurements are also crucial to particle identification, serving to distindecthoas and photons from
jets, and also helping to identify hadronic decays of tau leptons.

The layout of the ATLAS calorimeters is described in Refs. [1,2]. The n@jmponents are the lig-
uid argon (LAr) barrel (EMB) and endcap (EMC) electromagnetic (EMprimeters coveringy| < 3.2,
the tile scintillator hadronic barrel calorimeter coverimg < 1.7, the LAr hadronic endcap calorimeter
(HEC) covering 15 < |n| < 3.2, and the LAr forward calorimeter (FCAL) coveringl3< |n| < 4.9.

The electromagnetic calorimeters use lead absorbers and a LAr ionizaticmmeadd are contained
in three separate cryostats: one for the barrel and two for the enddag@salorimeters have an accordion
geometry that provides fulp symmetry without azimuthal cracks. They are segmented longitudinally
into three layers (called strips, middle, and back), the middle one of whictaiosnaround 80% of
the energy of an electromagnetic shower The cell Aigex Ag is 0.025x 0.025 in the middle layer
and 0003x 0.1 in the strips in the barrel calorimeter (the cells are larger at higji¢rallowing very
precisen measurements of incident particles. A presampler (PS) covers the tggianl.8 to improve
the energy measurement for particles that shower early. Plastic scintillafoatéeplaced between the
cryostats in order to recover some of the energy that is lost in dead mataha region.

Wrapped around the LAr calorimeter cryostats is the barrel hadronicimater, It uses iron ab-
sorbers interleaved with plastic scintillator tiles. The central barrel portiwers|n| < 1.0; two ex-
tended barrel calorimeters cove8C< |n| < 1.7. The 68 cm gaps between the central and extended
barrels are also instrumented with plastic scintillator sheets.

The endcaps of the hadronic calorimeter again use a liquid argon ahshrbdo the high radiation
doses experienced in the forward regions. Fé&r< |n| < 3.2, copper plate absorbers are used, and
the calorimeters are installed in the same cryostats as the EM endcaps. Thede@éring|n| > 3.1,
consists of rod-shaped electrodes embedded in a tungsten matrix.

The cell sizes in the hadronic calorimeters are larger than in the electrotitagaierimeters; ranging
from 0.1x0.1to 02 x 0.2.

Incoming particles usually deposit their energy in many calorimeter cells, batteitateral and
longitudinal directions. Clustering algorithms are designed to group thdiseacel to sum the total
deposited energy within each cluster. These energies are then calitwratecbunt for the energy de-
posited outside the cluster and in dead material. The calibration dependsinodieng particle type;
the calibration for electrons and photons is described in Ref. [3], anchiii@ation for jets in Ref. [4].

Two types of clustering algorithms are used in ATLAS:

e The “sliding-window” algorithm is based on summing cells within a fixed-sizéareggular win-
dow; the position of the window is adjusted so that its contained energy is lant@eamun). It
is an efficient tool for precisely reconstructing electromagnetic shoamagets from tau-lepton
decays. The fact that the cluster size is fixed allows for a very prekistec energy calibration
(Ref. [3]).

e The topological algorithm starts with a seed cell and iteratively adds to theecthe neighbor of
a cell already in the cluster, provided that the significance of the new eal¥gyy with respect to
the expected noise is above a threshold. It is efficient at suppressis®g in clusters with large
numbers of cells, and is used for jet and missing transverse energystegxion.

D An alternate fixed-size clustering algorithm which does not use the slidingpwiisliding window technique was used for
analysis of test beam data, but it will not be described here. See3Ré&fr [more information.



Noise in the calorimeter comes from two principal sources. The first is trmreadout elec-
tronics. The second is called “pile-up” noise, and arises from extraaictiens that can either be
overlaid in the same beam crossing with the primary interaction or occur denasgings that are
close in time to that of the primary interaction (as the response time of the calorié&ager
than the 25 ns interval between crossings).

This note describes the performance of these two clustering algorithms. 1 Seenmarizes the
overall procedure for calorimeter reconstruction. Sec. 2 describds/thclustering algorithms in detail.
Finally, Sec. 3 summarizes their performance.

1 Calorimeter Reconstruction Flow

To understand the calorimeter reconstruction flow, it is helpful to keep in thiaelectronics readout
pathway. The analog signal from each calorimeter cell is sampled and digitizee front-end electron-
ics boards. The digitized data are then processed by digital signalsgareg DSPs) on the back-end
electronics boards; the energy deposited in each cell is computed fraartipded data using an optimal
filtering algorithm that minimizes the effects of electronic and pile-up noise dakeacquisition system
then merges the data from all detector components; events which pasgel tequirements are written
to permanent storage in a specialized “bytestream” format.

These bytestream files are the input to the ATLAASIENA reconstruction software. This software
then produces two offline output streams. The Event Summary Data (EEBE)irs the full information
about events and their reconstruction, and allows performing technssasl saich as early-stage calibra-
tions. The Analysis Object Data (AOD) is a small subset of the ESD, contdmnghgr level information
used for later stage calibrations and physics analysis.

The reconstruction software first unpacks the data from the bytestesahmepresents the resulting
cell energies with objects callddArRawChannel andTileRawChannel?. The cell energies are then
corrected for effects such as channels that are operated at lesth¢haaminal high voltage (due to
localized calorimeter defects). The results of this correction form objects call@dloCell. Besides
being used for clustering, these objects are written to both the ESD and &&dns (only a subset of
cells is written to the latter).

The second step of calorimeter reconstruction is to build clusters from ¢le#se This can be done
directly, or through an intermediate step of tower building. The results flastar building are saved in
objects calledCaloCluster; these objects include references to their constituent cells. These aojects
also written to both data streams (though some details are omitted from the AOD)strea

2 Description of Clustering Algorithms

The sliding-window clustering algorithm is described in Sec. 2.1 and the tgigalcclustering algorithm
is described in Sec. 2.2.

2For data recorded at the start of the experiment, the calorimeter eliestmifl be in “transparent” mode, in which the
DSPs do not perform energy reconstruction, but instead simply otiteuaw data samples. In this case, an offline emulation
of the energy reconstruction is used to produce raw channels, atheeso Ref. [6].

3)No such corrections are applieddmHENA releases 12 and 13, and these effects are not included in the detectiatisim
However, when simulated data are reconstructed with release 13,abxkmrergy is scaled by a random factor (which remains
constant event-to-event), in order to simulate cell-level miscalibrations.



2.1 Sliding Window Clustering

In ATLAS, two kinds of sliding-window clusters are built: electromagnetic,rlatsed for electron and
photon (collectively called “egamma”) identification, and combined, which aeinformation from the
hadronic calorimeter and which are (up to release 13) later used for taun ieentification.

The sliding-window clustering algorithm proceeds in three steps: toweribgjlgrecluster (seed)
finding, and cluster filling. For combined clusters, precluster finding &mster filling actually occur in
a single step, while these are two separate steps for EM clusters.

2.1.1 Tower Building

Then — ¢ space of chosen calorimeters (within giverboundaries) is divided into a grid &, x N,
elements of siz&n x Ag. Inside each of these elements, the energy of all cells in all longitudinaklas/e
summed into the “tower” energy. The energies of cells spanning severgid@re distributed according
to the factional area of the cells intersected by each tower.

Table 1 gives the parameters used for the electromagnetic and combinedtildiag.

Tower Type EM Combined
Calorimeters| EMB, EMC All
|Nmax| 25 5.0

N, (An) 200 (0.025)| 100 (0.1)
Ny (Ap) 256 (0.025)| 64 (0.1)

Table 1:Configuration of tower building for the two types of towers available in ATIE&Seach tower
type, N, x Ny towers are built, each of siz&n x Ag, within then range given bynmay. The tower
energies are the sums over the cells in all layers of the listed calorimeters.

Towers are stored &aloTower objects. Clusters that are later built from towers do not refer back to
their constituent towers but rather directly to their constituent cells. Toarerthus intermediate objects
that are not needed to navigate from clusters to cells. For this reas@rstave not usually written to
the output of the reconstruction program.

Combined towers, however, are also used for jet building. As opposdgddters, jets do not keep
references to their constituent cells, but instead only to their constitueatsoWwor this particular case,
the intermediate combined towers must be saved to the ESDs, in order to allamgfadtthe cells
comprising a jef.

2.1.2 Sliding-Window Precluster (Seed) Finding

A window of fixed sizeN}i"4" x NJioW (in units of the tower siz&n x Ag, as given in Table 1) is
moved across each element of the tower grid defined above (in stepg ahdAg). If the window
transverse energy (defined as the sum of the transverse energytoivéirs contained in the window) is
a local maximum and is above a threshBi®s" a precluster is formed. The size of the window and the
threshold are optimized to obtain the best efficiency for finding preclystedsto limit the rate of fake
preclusters due to noise.

The position of the precluster is computed as the energy-weight@ud ¢ barycenters of all cells
within a fixed-size window around the tower at the center of the sliding winddwe. window used for

the position calculation can have a different (usually smaller) Nj£8x NJ°° than that used to define

the central towe?). Using a smaller window size makes the position computation less sensitive to noise

4)Combined towers are not needed in AODs since not all cells contributingstarie saved.
5 Special considerations apply at the edge of the calorimeter, where thewdtl the maximum energy may be at the edge
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| Cluster Type | EM | Combined|

Nr\;vindow % N(\;\J/indow 5%x5 5%x5

Elhresh(GeV) 3 15
pos pos
Np % Nq, 3x3 3x3

ANgupl, A@yupl 2x2 2x2

Fill Cells Option No Yes

Table 2:Parameters for precluster (seed) finding using the sliding-window alguritd)i"o" » Njindow

is the size of the window that is moved over the tower gr{Ef,eE'is the window energy threshold above
which a precluster is built; f*°x Np*is the size of the window that is used to compute the precluster
position; andAnqupi, Aup are the distances im and ¢ used to detect duplicate preclusters. “Fill
Cells Option” determines whether the precluster cells are taken directly frensetis within the sliding
window, or if cluster filling is done as a separate step. M numbers in this table are in tower units
A@ andAn, defined in Table 1.

Duplicate preclusters are then removed. If two preclusters have positithiis Angupi < Agupi, Only
the precluster with the largest transverse energy is kept; the other isedmov

Finally, the preclusters can optionally be filled with the cells that are encoegdmsthe sliding
window. In this case, all cluster quantities such as the per-layer enengiepositions are computed
based on this set of cells. This is done for combined sliding-window clygtere/hich a single set of
clusters is ultimately built from these seeds, but not for EM clusters, fartwdiusters of many sizes can
be constructed from the same seed. The latter clusters are filled in ateegiapa described below.

2.1.3 EM Cluster Formation

Cells are assigned to EM clusters by taking all cells within a rectangle oNﬁi%%erx Ng,'“s‘ercentered
on a layer-dependent seed position. Table 3 summarizes how this ismpedfothe middle layer is
processed first, followed by the strips, the presampler, and the batke middle layer, the precluster
barycenter positiompreci, ¢hreci iS Used as the seed position. The barycent@ddie, niddie Of the cells
included from the middle layer is then computed. The strips layer is done rsaxg, thhe barycenter from
the middle layer as the seed position. For the strips, the size of the rectangiaites depending on
Whetheﬂ\lgi”do‘”, the requested cluster sizegnis less than 7. This is done in such as way that fox&5
cluster, if the seed is close to the boundary between two strips, then thes&ipgare included into the
cluster in theg direction, whereas if the seed is located in the middle of the strip, only onetigméss
included. The barycentefstips, Gstrips IS computed from the cells in the strip layer. Finally, the PS and
back layers are processed, using respectively the strip and middlekayeenters as seed positions.
Clusters of differenN,‘j'“Sterx N(‘;,'”s‘e'sizes are built depending on the hypothesized particle type and
the cluster’s location in the calorimeter. The optimization of the size is a comproreisedn two
competing effects. The cluster should be large enough so that it contain®fbe energy deposited
by the particle in the calorimeter, thus limiting the effect of lateral shower flticlug on the energy
resolution. On the other hand, including more cells also means including mige2 no

of the large sliding window (since the window is restricted so that it lies entiréhyjimthe calorimeter). If the smaller window
is placed at the center of such a large window, it may miss most of thgyenéthe cluster. In such a case, when the large
window is at the calorimeter edge, the smaller window may be centered ¢owibewith the largest energy.
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Order | Layer | Ang (units of 0.025)| Agy (units of 0.025) Seed
1 Middle Ngluster N;Iuster Nprech @rec
2 | Strips Nguster 6 or & Nmiddle; Piddle
3 PS Ngluster 6or8& Nstrips, Pstrips
4 | Back Nplustery 1 Ngluster Nmiddie; @hiddle

Table 3:Summary of cells are included in the sliding window cluster for each calorirfegter. Column
1 gives the order in which the layers are processed; columns 3 and 4lgiveizeAn. x Ag, of the
rectangle that is drawn around the seed position defining the cells that elwdied in the cluster; and
column 5 gives the seed that is used for the each layeeither one either two cells i [of size 0.1]
are used if the cluster size;,NdOW is less than 7; two cells ip are used otherwise.)

Particle Type Barrel | Endcap
Electron 3x7 | 5x5
Converted photon | 3x7 | 5x5
Unconverted photon 3x5 | 5x5

Table 4:Cluster size I#“5ter>< N;,'“Sterfor different particle types in the barrel and endcap regions of the
calorimeter.

Table 4 lists the cluster sizes used for different EM patrticle types in theltand endcap electro-
magnetic calorimeters. In the barrel, showers from electrons are widetttbgae from photons because
electrons interact more with upstream material, and also can emit bremssgrahiotons. Since the
magnetic field curves the electron trajectory in thdirection, theg size of the cluster is increased in
order to contain more of the energy. Similarly, converted photons lead traiguositron pairs that
spread in thap direction due to the magnetic field. In the endcaps, because the effee ofatnetic
field is smaller, the cluster size is the same for all particle types. Itis larggttian in the barrel because
of the smaller physical cell size.

Technically, the actual construction of clusters of cluster sizes is ntirpezd at the same time in
the reconstruction chain in release 12 and subsequent releases. &gkaiaed in Fig. 1: in release 12,
the clusters of various sizes are constructed before electron andhplegamma) identification. This
implies that, since cluster calibration occurs right after the clusters are tudtty eluster size must be
calibrated both as a potential electron or photon. This leads to an unagcdsglication of calibrated
clusters. This scheme was thus improved starting from release 13: the cluss¢ruction and filling is
done as a part of egamma identification. Thus, the particle type hypothdsizing cluster is known
before cluster calibration.

2.2 Topological Clustering

The basic idea of topological clustering is to group into clusters neighboeltgthat have energies that
are significant compared to the expected noise. This results in clustetsatleat variable number of
cells, in contrast to the fixed-size clusters produced by the sliding-wiradgarithm (Sec. 2.1). Cluster
growth starts at seed cells that have an energy significance above thi@sholdseeg Neighboring cells
are added to the cluster if their significance is above a low thresh@ié neighboring cell can serve as
an additional seed to expand the cluster if its significance is above a medieshaldt,eighno: The low
threshold at the perimeter ensures that tails of showers are not didcatuke the higher thresholds for
seeds and neighbors effectively suppress both electronics andpileise.

The topological clustering algorithm consist of two steps: the cluster makktha cluster splitter.



Release 12 sequence:

‘ Pre-Cluster Finding H Cluster Filling Calibration

* LArClusterEM * LArClusterEM « LArClusterEM

s LArClusterEM35 | | = LArClusterEM35

» LArClusterEM37 | | » LArClusterEM37

» LArClusterEMgam

* LArClusterEM35gam
* LArClusterEM37gam

Release 13 sequence:

‘ Pre-Cluster Finding H egamma } Cluster Filling Calibration

* LArClusterEM L ArClusterEM

+egClusterCollection

Figure 1:Sequence of cluster building and egamma identification in releases 123arithé blue boxes
correspond to the steps described in this section, while the gray boxeslidtster collections that are
created. Note thaegClusterCollectioncontains clusters of multiple sizes and calibrations.

2.2.1 Cluster Maker

The algorithm to form topological clusters from a list of calorimeter cellsgligall cells, but may also
be a subset of cells defined by a “region of interest,” such as is usee imdiger, or by the systems
present in a beam test) consists of the following steps:

Finding seeds: Identify all cells with a signal to noise ratio above the (rather high) seesbitiold
tseeg@nd put them into a seed list. Each seed cell forms a “proto-cluster.” ighalsused for
the threshold comparison can either be the cell energy or its absolute vehgenoise is the
expected RMS of the electronics noise for the current gain and conditptmnally, the expected
contribution from pile-up may be added to the noise in quadrature (this ispdefault). See
Table 5 for the parameter values that are used.

Finding neighbors : All cells in the current seed list are ordered in descending order irakigmoise
ratio. For each seed cell in turn, its neighboring cells are considerachdighboring cell has not
been used as a seed so far, and its signal to noise ratio is above theoné¢figabholdneighhos the
cell is added to a neighbor seed list and included in the the adjacent pustercIn the case where
the cell is adjacent to more than one proto-cluster, the proto-clusters agednéf the signal to
noise ratio is above the cell threshaigd but belowt,eighnos the cell is included only in the first
adjacent proto-cluster, which is the one providing the more significanhbeigo this cell. Once
all seed cells have been processed, the original seed list is discardedeaneighbor seed list
becomes the new seed list. This procedure is repeated until the seed listys emp

For this step, the signal is always defined as the absolute value of trgyéBerthe noise defi-
nition is identical to that of the seed-finding step. The parameter valuesréhased are listed in
Table 5. Note that, = 0 implies that all cells neighboring a seed cell will end up in a cluster,
regardless of their energies.



The definition of neighboring cells includes the (usually) eight surroundails within the same
calorimeter layer. Optionally, the set of neighbors can also include celltappéng partially in
n and @ in adjacent layers and/or adjacent calorimeter systems. For a simple calonmitéte
identical granularity in all layers, a typical cell would thus have ten neighiath this option. In
ATLAS, this number is often larger as the granularity varies between diffaralorimeter layers
and regions. By default, this expanded definition of neighboring cellsid.us

Finalize : The remaining proto-clusters (some of the original proto-clusters argatiavith others) are
sorted in descending order iy and converted to clusters. Those wih (optionally |Et|) less
than a threshold are removed at this step.

To summarize, topological clusters are seeded by cells with large signake (aovegeed, grow
by iteratively adding neighboring cells (with signal to noise ab¥gnno), and finish by including all
direct neighbor cells on the outer perimeter (with signal to noise algye

The cell-by-cell noise is computed IBaloNoiseTool[6, 7] and varies by many orders of magnitude
over the entire detector. It also depends on the luminosity. Figure 2 shevigMi$ of the electronics
and total noise for both zero luminosity and high luminosi#§ £ 10** cm2s-1). At high luminosity,
the noise in the endcaps and forward region is dominated by pile-up.

3
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Figure 2:Per-cell RMS for each calorimeter layer of electronics noise at zero lositiy (left) and total
noise at high luminosity (right), in MeV.

Given the expected amount of noise, the number of clusters formed groetynoise can be pre-
dicted as a function of the seed threshold. Uskigo define the signal and a seed thresholtQfi= 4,
11.9 noise clusters are expected for the full set of 187652 cells. The distribof these pure noise
clusters as a function af strictly follows the average granularity in each region, as shown in Fig. 3.

The algorithm described so far is adequate for isolated signals, suntgbessarticle beam tests. An
early version of this algorithm with slightly different noise threshold choisas successfully used in
the 2002 combined beam test with sections of the EM and hadronic endoamegers [8].

2.2.2 Cluster Splitter

The ideal situation of isolated clusters is however not typical for most Alefents. Especially in the
endcaps and forward calorimeters, clusters could grow to cover legge af the detector if sufficient en-
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Figure 3: Average cell granularity (number of cells pAn = 0.1) as from the detector geometry (blue
histogram) and as calculated from the distribution of topological clusters inlsited noise-only events
(red points).

ergy is present between incident particles. However, even in the tasertapping showers, individual
particles may still be separable if they are far enough apart to form locahmaan the calorimeter.

The cluster splitting algorithm is designed for such situations and acts onlteeamprising the
previously found topological clusters. The algorithm splits individualtelss but the current implemen-
tation processes all clusters at once.

Finding local maxima : The set of local maximum cells is defined as those clustered cells satisfying:

e E > 500 MeV,;
e Energy greater than that of any neighboring cell; and
e Number of neighboring cells within the parent cluster above a threshdiaulties > 4).

As described in the previous section, the definition of cell neighbors itiaer doe restricted to a
single calorimeter layer, or can also include cells from adjacent layersurgystems. Generally,
the choice used for cluster making should also be used here. It hatoeeithat excluding cells
from certain layers where no large maxima are expected, such as tlaenptes and the strips,
suppresses the formation of noise clusters. By default, cells from theriadalorimeters are
also excluded from forming local maxima. However, local maxima in the striggtemhadronic
calorimeters are used if they don’t overlap with one of the primary local makimaand ¢. In
this way, hadronic clusters with significant energy in the EM calorimeters wiliiit based on
their electromagnetic core, while those without significant EM activity can silédparated by
coarser maxima in the hadronic calorimeters.

Once the list of local maxima is complete, the number of final clusters is fully éted: each
local maximum will form exactly one cluster without the possibility of merging.eRaclusters
without any local maximum cell will not be split.
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Finding neighbors : Clusters are then grown around the local maxima as before, excepmirntlyathe
cells originally clustered are used, no thresholds are applied, and rneratusrging occurs. The
local maxima list serves as the initial seed list. At each iteration, the curredtlis¢is sorted in
descending order in energy. All direct unused neighbors to the sdlschce added to a neighbor
seed list and included in adjacent proto-clusters. In the case whetkagjoins more than one
proto-cluster, the two proto-clusters with the most energetic neighberthe first two) will share
the cell. Cells subject to sharing are removed again from the neighbor digharproto-clusters
and added to a shared cell list to be handled in the next step. Once alteleedre processed,
the original seed list is discarded and the neighbor seed list becomesitiseee list. This step is
iterated until the seed list is empty.

Shared cells: The shared cell list is next expanded by iteratively adding neighbatsitk in the original
cell set and which have not yet been assigned to any proto-clusteseTdells are associated
with the two proto-clusters adjoining the original shared cell that they neigtitach cell in the
expanded shared cell list is then added to its two adjoining proto-clustershaitheights

- Ei+ I’Ez’

W1 Wy =1— Wy, = exp(dl — dz), (l)
whereE; » are the energies of the two proto-clusters dpgl are the distances of the shared cell
to the proto-cluster centroids in units of a typical EM-shower scale (otlyr6 cm). The weights
give a rough estimate of the probability ratio for a given cell to belong to edluster assuming
the clusters originate from individual electromagnetic showers. In pedtie weights turn out to
be close to either zero or one (they always sum to unity by definition), arsthie exact choice of
the distance parameter is not critical.

Finalize : Each local maximum has now produced a proto-cluster. All parent ctustghout a local
maximum are added to the list of proto-clusters. They all are sorted inmi#ingeorder inEr and
converted to clusters.

At this point the topological clusters represent three dimensional ebégy in the calorimeter that
sometimes share cells on the border between them.
2.2.3 633 and 420 Topological Clusters

In the standard ATLAS reconstruction, two types of topological clustersailt: the electromagnetic
“633" clusters and the combined “420” clusters. The parameters definewe two cluster types are
listed in Table 5.

3 Performance of the Clustering Algorithms

Section 3.1 summarizes the generic properties (multiplicity per event, typiagyerell content) of the
two cluster types, while Secs. 3.2 and 3.3 are present results specifidimthigorithms.

3.1 Typical Cluster Multiplicities, Energies, and Cell Content

Figure 4 shows the distributions of cluster multiplicity and energy for 5EM sliding-window and
topological 420 clusters, for typical ATLAS events from the egamma, jetnpainimum bias streams [9].

The multiplicity and energy distributions look similar for streams with hgthphysics content
(egamma and jets), while they have lower mean values in other events sucmaké minimum bias

11



Parameter | EM633 | Had420 |

Calorimeters EM only All
Seed signal definition E |E|
Cluster cut before splitting Er > 5 GeV | |[Er| > 0 GeV
tseed 6 4
theighbor 3 2
teell 3 0

Table 5:Parameters used to build the two types of topological cluster available in thda@iMTLAS
reconstruction.

| Sliding-Window Cluster Multiplicity | | Topological Cluster Multiplicity |

V] Egamma Stream
-mm Jet Stream
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Figure 4:Electromagneti® x 5 sliding-window cluster (left) and 420 topological cluster (right) multi-
plicities (top) and energies (bottom), shown for three data streams: egajatmand minimum bias.

12



stream. While the typical number of EM sliding-window clusters peaks at Blpgsics event, the num-
ber of 420 topological clusters peaks at around 250 per event.

The number of cells as a function gfand ¢ in electromagnetic % 5 clusters is shown in Fig. 5.
Since the cluster has a fixed size, this is determined almost entirely by the degectoetry. Indeed,
this number is more or less constant in the EM barrel, with two possible valyendieg on thep
barycenter position inside the strip compartment (one additional ramisrincluded when the position
is0< @< 0.250rQ75< @ < 1in strip cell units). The number of cells decreases witih the endcaps
because the granularity of strip cells increases witthus fewer strip cells are included in the constant
5 x 5 cluster size.
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Figure 5:Number of cells in electromagnetic 5 clusters as a function af (left) and|g| (right) with
|| < 0.5.

Figure 6 shows the number of cells in 420 topological clusters. Theserslasteof variable size,
depending mostly on the energy of the incoming particle: more energetic pagdguce larger showers
and thus larger clusters.

3.2 Sliding-Window Clustering
3.2.1 Efficiency, Fake Rate, and Duplicate Clusters

Single particle samples are used to study the sliding window clustering effycéamtthe rates of fake
and duplicate clusters.

The clustering efficiency is defined as the ratio of the number of eventevaliéeast one cluster is
reconstructed over the total number of events:

£ — N(Ncluster > 0)‘ 2)
Neotal
This formula is correct provided that the fake rate is negligible, which is detrated to be the case
below.
Fake and duplicate clusters are seen in events where more than oneislestenstructed in a single
particle sample. Fake clusters are clusters formed purely from noisedetlyonic noise is considered
here), and are more or less uniformly distributed infhe plane. Duplicate clusters often arise from real
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Figure 6:Number of cells in 420 topological clusters as a function of the cluster texssvenergy, from
the egamma data stream.

physics processes: for electrons, duplicate clusters can originatetiie emission of bremsstrahlung
photons, and for photons, they can arise from conversions. Wheodbiss, the secondary particle
can produce to an additional cluster very close to the cluster from the alrjggmticle. If the distance
between two cluster8R < 0.3, the clusters are considered to be duplicates; otherwise, one of the two
clusters is considered to be a fake.

Table 6 gives the clustering efficiency and the rates of fake and duptikeiers for the EM sliding
window algorithm applied to single electron and photon samples of variousviese energies. As
expected, the clustering efficiency rises with the energy

Er (GeV) | N (events)| & (%) | Fake Rate (%) Duplicate ClustersX10)
Electrons
10 10000 98.77 0 9.1
40 10000 99.96 0 0.1
60 10000 99.98 0 0
120 10000 100.00 0 0
500 10000 100.00 0 0.1
Photons
20 21250 99.89 0 1.7
40 10000 99.96 0 0.1
60 30500 99.98 0 0.03
120 10000 99.99 0 0
500 10000 99.98 0 0.2

Table 6: Clustering efficiency and rates of fake and duplicate clusters for the EM glidindow algo-
rithm applied to single electron and photon samples of various transveesgies.

The rate of duplicate clusters decreases as the energy increasest @xeery high energy). This
is because the opening angle between the two particles (electron-phatt@cimon-positron) is larger
at lower energy, giving some separation between the clusters. As thgyenereases, the angle be-
comes smaller than th&ng,p andAgyup cuts (see Table 2), and thus the number of duplicate clusters
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decrease®. At very high energy Er = 500 GeV), catastrophic interactions of electrons and photons
with matter can create (legitimate) closely-spaced clusters, which are camtegblicates in the table.

3.2.2 Effect of Sliding Window Clustering Parameters

As described in Sec. 2.1, the sliding window clustering algorithm is consistsex steps: tower build-
ing, precluster (seed) finding, and cluster filling. The tower building petars, given in Table 1, are
determined by the geometrical specifications and granularities of the calaidrmstsl. The parameters
for preclustering quoted in Table 2 are determined by typical showerisizlee calorimeter.

EM preclusters (seeds) are always found by movingeivindow over the array of towers, though
clusters of other sizes may be built later. This is sufficient for the stardectton and photon reconstruc-
tion, but is not adequate for other applications, such as recoverimgyelost to bremsstrahlung. Each
such application may require building additional clusters with retuned paresriaterder to achieve
optimal performance.

3.2.3 Nearby Clusters and Energy Sharing

Sliding-window clusters that are close together can have cells in commoref8yig the sliding-window
cluster reconstruction simply ignores such cases and assigns the estigg efithe shared cells to all
overlapping clusters. The energies of shared cells are thus countedlentifties.

An optional algorithm is available to handle properly sharing cells betweestetks When this is
used, if a cell is shared bM clusters, its energy is added to each of the clusters with the following
weights:

3)

W — i
1] ZE:1Ek7
for a celli in a cluster;.

Energy sharing is illustrated in Fig. 7, where results from a 50 GeV singltoptsample are shown.
For the case in which the algorithm is not used, the total reconstructeglyerean be larger than initial
photon energy due to double counting of cells in overlapping clusterasecated around the" e pair
created by photon conversions. After the energy sharing algorithnbdes applied, the total energy
becomes comparable to the initial photon energy, demonstrating that the -doulpléng is gone.

3.3 Topological Clustering
3.3.1 Nearby Clusters and Energy Sharing

Two clusters may share some cells in the border region between them, abeatkbéc Sec. 2.2. The
cluster splitting algorithm ensures that the weights given a cell shared dretweltiple clusters add to
unity; thus no double counting of energy occurs.

3.3.2 Noise Uncertainty

Since all thresholds for topological clustering are relative to the expectexlint of noise, both from
electronics and pile-up, uncertainties in these numbers have a direct @ffehe reconstruction effi-
ciency of the clustering algorithm. Such uncertainties can result in an seliaahe number of fake
clusters (especially if the thresholds are low) and also lower clusterirgieeifly and more bad cells
included in clusters, when the incoming particle energy becomes close todsbalds.

6)Computing these numbers, a bug was discovered in the simulation in theitatiop of the cell identifier. As a conse-
guence, some energy can be assigned to the wrong cell arpsi@, creating fake duplicate clusters for incoming particles of
sufficient energy$~ 500 GeV). This effect is subtracted from the numbers quoted in the table.

15



=
(@)
w
T T

Ll LT

""""" without energy sharing

— with energy sharing

entries/bin

10

1=~15 2‘d“§d”4‘d”‘5‘dg 5 70"' 8090 100
All Clusters Energy (GeV)

Figure 7: Reconstructed total energy froB0 GeV single photon events without energy sharing (red
dashed histogram) and with energy sharing (blue solid histogram). Nlatd cluster corrections have
been applied.

To illustrate the first issue, consider the effect that a 10% noise variat@ihaerlls (a very unlikely
scenario) would have on building topological clusters with the 420 and &&3eters. The variation
in noise will affect the clusters with low threshold much more those with higheshulds. Indeed,
the expected number of purely noise clusters is given by the complementaryurnction of the seed

thresholdiseed
2
Neius = FsignNceIIs\/; / e /24t (4)

tseed

Here,Fsign = 1 for the 420 parameter set (which usE$to define cluster seeds) and 0.5 for 633 (which
usesk). Ngeiis is the number of input cells; this is 187562 (all calorimeters) for 420 and@F2EM
calorimeters only withn| < 2.5) for 633.

Figure 8 show® s for the 420 and 633 parameter sets for a 10% noise variatibr(Beeq<= 4.4
for 420 and ™ < tseeq<= 6.6 for 633). For the 420 case, the 10% noise variation shifts the mean number
of purely noise clusters per event from a nominal value of 12 to 2 (favanestimate of the noise) or
60 (for an underestimate). For the 633 case, the number of noise clpstergent is always very small,
even in the presence of noise uncertainties.

Summary

The two clustering algorithms used in the ATLASHENA reconstruction releases 12 and 13 have been
described and their performance summarized. Several improvemenipaotes to the sliding-window
algorithm in future releases. The clustering parameters can be optimizetieiohzandle situations with
very low energy particles or with more than a single particle (electrons thabesnitsstrahlung photons,
or converted photons). Duplicate clusters also need to be removedufrienof strip cells included in
the clusters may also be reconsidered.

The hadronic 420 topological clusters are now widely used and validiatgdhe electromagnetic
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Figure 8:Number of noise clusteks. the seed thresholdd.4for the 420 (left) and 633 (right) parameter
sets as predicted by Eq. 4. On the left plot, the measured numbers of€ins#d 00 GeVsingle electron
sample obtained withdeq= 3.6, 4, and 4.4 are superimposed.

633 clusters are not currently used in the reconstruction of any phoyisjest. This cluster type will thus
be removed unless some use is found for it.

17



References

[1] The ATLAS Collaboration, The ATLAS Experiment at the CERN Largadrbn Collider, 2008,
submitted to JINST (2008).

[2] The ATLAS Collaboration, Liquid Argon Calorimeter Technical Desigrep@rt, 1996,
CERN/LHCC/96-41.

[3] C. Adam-Bourdarios, S. Snydet al, EM calorimeter calibration and performance, 2008, CSC-EG-
06.

[4] P. Schachet al, Performance of overall calorimetry energy reconstruction: hadaadiloration H1,
topo cluster classification, 2008, CSC-CALO-02.

[5] The ATLAS Collaboration, Electromagnetic Reconstruction in Liquid Arggalorimeter at CTB,
2008, Reference not available yet..

[6] W. Lampl et al, Digitization of LAr calorimeter for CSC simulations, 2007, ATL-COM-LARG-
2007-008, ATL-LARG-PUB-2007-011.

[7] Lechowski, Matthieu, Test of the 'Little Higgs’ model in ATLAS at LHCnd simulation of the
digitization of the electromagnetic calorimeter. (In French), 2005, CERIESIS-2005-042.

[8] ATLAS Liquid Argon EMEC/HEC Author, Cojocaru, C. and others, éluinstrum. Meth.A531
(2004) 481-514.

[9] Arguin, J.F.et al, Data Streaming in ATLAS, 2007, ATL-COM-GEN-2007-004.

18



